Advertisement

Applied Physics A

, 125:488 | Cite as

Improved electrochemical performance of rGO-wrapped MoO3 nanocomposite for supercapacitors

  • N. Guru Prakash
  • M. Dhananjaya
  • A. Lakshmi Narayana
  • Hussen Maseed
  • V. V. S. S. Srikanth
  • O. M. HussainEmail author
Article
  • 65 Downloads

Abstract

A low-cost hydrothermal method has been employed to synthesize phase pure α-MoO3 and MoO3/rGO nanocomposite electrodes with novel structures for high-performance supercapacitors. Both nanocomposites exhibited orthorhombic layered structure. Pure MoO3 exhibited nanorod-like morphology, whereas MoO3/rGO nanocomposite showed flower-like structure. The TEM studies reveal that the GO reduced to rGO and wrapped to the MoO3 nanorods. The pure MoO3 nanorods electrode demonstrated a specific capacitance of 331 F/g at a current density of 1 A/g. The MoO3/rGO nanocomposite electrode with unique flower-like structure showed enhanced electrochemical performance with a specific capacitance of 486 F/g at a current density of 1 A/g with 92% capacity retention even after 1000 discharge cycles.

Notes

References

  1. 1.
    X. Cao, B. Zheng, W. Shi, J. Yang, Z. Fan, Z. Luo, R. Xianhong, B. Chen, Q. Yan, H. Zhang, Adv. Mater. 27, 4695–4701 (2015)CrossRefGoogle Scholar
  2. 2.
    Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, J. Phys. Chem. C 113, 13103–13107 (2009)CrossRefGoogle Scholar
  3. 3.
    W. Xiao-Feng, Y. Zheng, R. Dian-Bo, Chin. J. Chem. 24, 1126–1132 (2006)CrossRefGoogle Scholar
  4. 4.
    A. Pathak, S.G. Abhijeet, R. Satyajit, C. Brahmananda, S.R. Chandra, J. Phys. Chem. C 121, 18992–19001 (2017)CrossRefGoogle Scholar
  5. 5.
    C.C. Hu, K.H. Chang, M.C. Lin, Y.T. Wu, Nano Lett. 2006(6), 2690–2695 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    G. Ouassim, P. Jean-Louis, F. Frederic, A.C.S. Appl, Mater. Inter. 1, 1130–1139 (2009)CrossRefGoogle Scholar
  7. 7.
    M. Dhananjaya, N.G. Prakash, A.L. Narayana, O.M. Hussain, Appl. Phys. A 124, 185–191 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    K. Krishnamoorthy, K. Sang-Jae, Mater. Res. Bull. 48, 3136–3139 (2013)CrossRefGoogle Scholar
  9. 9.
    J. Chen, K. Huang, S. Liu, Electrochim. Acta 55, 1–5 (2009)CrossRefGoogle Scholar
  10. 10.
    T. Jiang, S. Yang, Z. Bai, P. Dai, X. Yu, M. Wu, H. Hu, Nanotechnology 29, 315402 (2018)CrossRefGoogle Scholar
  11. 11.
    N.G. Prakash, M. Dhananjaya, A.L. Narayana, D.P. Shaik, P. Rosaiah, O.M. Hussain, Ceram. Int. 44, 9967–9975 (2018)CrossRefGoogle Scholar
  12. 12.
    V.K. Gupta, A. Fakhri, S. Agarwal, M. Naji, J. Mol. Liq. 249, 61–65 (2018)CrossRefGoogle Scholar
  13. 13.
    N.M. Carretero, M.P. Lichtenstein, E. Perez, S. Sandoval, G. Tobias, C. Sunol, N.C. Pastor, Electrochim. Acta. 157, 369–377 (2014)CrossRefGoogle Scholar
  14. 14.
    B.M. Sánchez, S.G. Patrick, Electrochim. Acta 98, 294–302 (2013)CrossRefGoogle Scholar
  15. 15.
    R.B. Pujari, V.C. Lokhande, V.S. Kumbhar, N.R. Chodankar, C.D. Lokhande, J. Mater. Sci.: Mater. Electron. 27, 3312–3317 (2016)Google Scholar
  16. 16.
    Z. Wang, S. Madhavi, X.W. (David) Lou, J. Phys. Chem. C 116, 12508–12513 (2012)CrossRefGoogle Scholar
  17. 17.
    D. Vivek, Y.R. Kyong, J.K. Hyun, H.J. Dong, J. Nanomater. 763953, 1–4 (2013)Google Scholar
  18. 18.
    S.G. Prolongo, R. Moriche, A. Jiménez-Suárez, M. Sánchez, A. Ureña, Eur. Polym. J 61, 206–214 (2014)CrossRefGoogle Scholar
  19. 19.
    P. Ji, B. Shang, Q. Peng, X. Hu, J. Wei, J. Power Sourc. 400, 572–579 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    H. Jung, B. Kim, S. Kim, H. Jang, N.S. Lee, W. Kim, M.H. Kim, Mater. Lett. 204, 173–176 (2017)CrossRefGoogle Scholar
  21. 21.
    N. Reddeppa, R. Zha, L. Wei, X. Guo, J. Alloys Compd. 687, 79–86 (2016)CrossRefGoogle Scholar
  22. 22.
    M. Yu, X. Cheng, Y. Zeng, Z. Wang, Y. Tong, X. Lu, S. Yang, Angew. Chem. 128, 6874–6878 (2016)CrossRefGoogle Scholar
  23. 23.
    O. Yayapao, A. Phuruangrat, T. Thongtem, S. Thongtem, Russ. J. Phys. Chem. 90, 1224–1230 (2009)CrossRefGoogle Scholar
  24. 24.
    W. Shaheen, M.F. Warsi, M. Shahid, M. Azhar Khan, M. Asghar, Z. Ali, M. Sarfraz, H. Anwar, M. Nadeem, I. Shakir, Electrochim. Acta. 219, 330–338 (2016)CrossRefGoogle Scholar
  25. 25.
    M.Y. Ho, P.S. Khiew, D. Isa, W.S. Chiu, C.H. Chia, J. Mater. Sci. Mater. Electron. 28, 6907–6918 (2017)CrossRefGoogle Scholar
  26. 26.
    J. Chang, M. Jin, F. Yao, T.H. Kim, V.T. Le, H. Yue, F. Gunes, B. Li, A. Ghosh, S. Xie, Y.H. Lee, Adv. Funct. Mater. 23, 5074–5083 (2013)CrossRefGoogle Scholar
  27. 27.
    J. Zhou, J. Song, H. Li, X. Feng, Z. Huang, S. Chen, Y. Ma, L. Wang, X. Yan, New J. Chem. 39, 8780–8786 (2015)CrossRefGoogle Scholar
  28. 28.
    L. Khandare, D.J. Late, Appl. Surf. Sci. 418, 2–8 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    W.S. Hummers Jr., R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  30. 30.
    Y. Sun, J. Wang, B. Zhao, R. Cai, R. Ran, Z. Shao, J. Mater. Chem. A 1, 4736–4746 (2013)CrossRefGoogle Scholar
  31. 31.
    S. Bai, C. Chen, R. Luo, A. Chen, D. Li, Sens. Actuators B 216, 113–120 (2015)CrossRefGoogle Scholar
  32. 32.
    S.A. Khalate, R.S. Kate, H.M. Pathan, R.J. Deokate, J. Solid State Electrochem. 21, 2737–2746 (2017)CrossRefGoogle Scholar
  33. 33.
    C.S. Barrett, T.B. Massalski, Structure of metals (Pergaron Press, Oxford, 1980), p. 1923Google Scholar
  34. 34.
    S. Navaladian, B. Viswanathan, T.K. Varadarajan, R.P. Viswanath, Nanoscale Res. Lett. 4, 181–186 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    L. Seguin, M. Figlarz, R. Cavagnat, J.C. Lasségues, Spectrochim. Acta Part A 51, 1323–1344 (1995)ADSCrossRefGoogle Scholar
  36. 36.
    S.H. Lee, M.J. Seong, C.E. Tracy, A. Mascarenhas, J.R. Pitts, S.K. Deb, Solid State Ionics 147, 129–133 (2002)CrossRefGoogle Scholar
  37. 37.
    G. Mestl, P. Ruiz, B. Delmon, H. Knözinger, J. Phys. Chem. 98, 11269–11275 (1994)CrossRefGoogle Scholar
  38. 38.
    P. Rosaiah, J. Zhu, O.M. Hussain, Y. Qiu, Ceram. Int. 44, 3077–3084 (2018)CrossRefGoogle Scholar
  39. 39.
    P. Rosaiah, J. Zhu, O.M. Hussain, Y. Qiu, Ionics 25, 655–664 (2019)CrossRefGoogle Scholar
  40. 40.
    X. Yang, H. Ding, D. Zhang, X. Yan, C. Lu, J. Qin, R. Zhang, H. Tang, H. Song, Cryst. Res. Technol. 46, 1195–1201 (2011)CrossRefGoogle Scholar
  41. 41.
    A.L. Narayana, M. Dhananjaya, N.G. Prakash, O.M. Hussain, A. Mauger, C.M. Julien, Chem. Select 3, 9150–9158 (2018)Google Scholar
  42. 42.
    A. Chithambararaj, A.C. Bose, Cryst Eng Comm. 16, 6175–6186 (2014)CrossRefGoogle Scholar
  43. 43.
    X.W. Lou, H.C. Zeng, Chem. Mater. 14, 4781–4789 (2002)CrossRefGoogle Scholar
  44. 44.
    H. Shi, L. Xi, L. Tian, W. Xun, Chem. Eur. J. 16, 1889–1896 (2010)CrossRefGoogle Scholar
  45. 45.
    C. Zhiming, Y. Weiyong, M.L. Chang, J. Mater. Chem. A. 1, 12926–12931 (2013)CrossRefGoogle Scholar
  46. 46.
    X. Yuandong, Z. Xia, L. Yan, Z. Yujun, H. Lijun, Z. Junwei, Mater. Lett. 210, 314–316 (2018)CrossRefGoogle Scholar
  47. 47.
    Z. Jianfeng, L. Xiao, W. Lei, RSC Adv. 6, 98506–98513 (2016)CrossRefGoogle Scholar
  48. 48.
    X. Zhang, L. Wei, X. Guo, Chem. Eng. J. 353, 615–625 (2018)CrossRefGoogle Scholar
  49. 49.
    P. Du, W. Weil, D. Liu, H. Kang, C. Liu, P. Liu, J. Mater. Sci. 53, 5255–5269 (2018)ADSCrossRefGoogle Scholar
  50. 50.
    K. Zhou, W. Zhou, X. Liu, Y. Sang, S. Ji, W. Li, J. Lu, L. Li, W. Niu, H. Liu, S. Chen, Nano Energy 12, 510–520 (2015)CrossRefGoogle Scholar
  51. 51.
    D. Murugesan, S. Prakash, N. Ponpandian, P. Manisankar, C. Viswanathan, Colloid. Surf. A Physicochem. Eng. Aspects 569, 137–144 (2019)CrossRefGoogle Scholar
  52. 52.
    M. Faraji, A. Abedini, Int. J. Hydrog. Energy 44, 2741–2751 (2019)CrossRefGoogle Scholar
  53. 53.
    S. Pala, K.K. Chattopadhyaya, Mater. Today Proc. 5, 9776–9782 (2018)CrossRefGoogle Scholar
  54. 54.
    Y. Cao, Z. Cui, T. Ji, W. Li, K. Xu, R. Zou, J. Yang, Z. Qin, J. Hu, J. Alloy. Compd. 725, 373–378 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • N. Guru Prakash
    • 1
  • M. Dhananjaya
    • 1
  • A. Lakshmi Narayana
    • 1
  • Hussen Maseed
    • 2
  • V. V. S. S. Srikanth
    • 2
  • O. M. Hussain
    • 1
    Email author
  1. 1.Thin Films Laboratory, Department of PhysicsSri Venkateswara UniversityTirupatiIndia
  2. 2.School of Engineering Sciences and TechnologyUniversity of HyderabadHyderabadIndia

Personalised recommendations