Applied Physics A

, 125:462 | Cite as

Laser micromachining of silicon and cemented tungsten carbide using picosecond laser pulses in burst mode: ablation mechanisms and heat accumulation

  • D. MetznerEmail author
  • P. Lickschat
  • S. Weißmantel


This paper presents results obtained by studying material removal of silicon and cemented tungsten carbide using high-frequency ultrashort-pulsed laser radiation. In laser-induced material removal, ablation mechanisms and heat accumulation effects are considered. Depending on the fluence and number of pulses in a burst, structures are created on silicon and cemented tungsten carbide in order to be able to determine the ablated volume. A single pulse in the burst represents the conventionally pulsed laser radiation. Depending on the number of pulses, the ablated volume per pulse rises in the burst. Furthermore, an increase in the number of pulses in the burst results in a repetitive decrease as well as an increase in the ablated volume. Investigations at different ambient pressures establish that this phenomenon could be changed for cemented tungsten carbide under fine vacuum. The simulations demonstrate that the laser-induced heat accumulation in burst mode contributes significantly to the removed volume.



The authors thank the European Social Fund for Germany (ESF) for funding the project Eila-Sax No. 1003 395 06.


  1. 1.
    M. Müller, M. Kienel, A. Klenke, T. Gottschall, E. Shestaev, M. Plötner, J. Limpert, A. Tünnermann, Opt. Lett. 41, 3439 (2016)CrossRefADSGoogle Scholar
  2. 2.
    P. Lickschat, J. Schille, G. Reiße, S. Weißmantel, DVS-Berichte Band, vol. 307 (DVS Media, Düsseldorf, 2014), pp. 135–143Google Scholar
  3. 3.
    M.E. Povarnitsyn, T.E. Itina, P.R. Levashov, K.V. Khishchenko, Appl. Surf. Sci. 257, 5168 (2011)CrossRefADSGoogle Scholar
  4. 4.
    M.E. Povarnitsyn, V.B. Fokin, P.R. Levashov, T.E. Itina, Phys. Rev. B 92, 232 (2015)CrossRefGoogle Scholar
  5. 5.
    A. Semerok, C. Dutouquet, Thin Solid Films 453–454, 501 (2004)CrossRefGoogle Scholar
  6. 6.
    D.E. Roberts, A. Du Plessis, L.R. Botha, Appl. Surf. Sci. 256, 1784 (2010)CrossRefADSGoogle Scholar
  7. 7.
    C.A. Hartmann, J. Laser Micro/Nanoeng. 2, 44 (2007)CrossRefGoogle Scholar
  8. 8.
    T. Donnelly, J.G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, X. Ni, J. Appl. Phys. 106, 013304 (2009)CrossRefADSGoogle Scholar
  9. 9.
    W. Hu, Y.C. Shin, G. King, Appl. Phys. A 98, 407 (2009)CrossRefADSGoogle Scholar
  10. 10.
    P. Lickschat, A. Demba, S. Weissmantel, Appl. Phys. A 123, 137 (2017)CrossRefADSGoogle Scholar
  11. 11.
    T. Kramer, B. Neuenschwander, B. Jäggi, S. Remund, U. Hunziker, J. Zürcher, Phys. Proc. 83, 123 (2016)CrossRefADSGoogle Scholar
  12. 12.
    J. Mur, R. Petkovšek, Appl. Phys. A 124, 109 (2018)CrossRefGoogle Scholar
  13. 13.
    D. Metzner, P. Lickschat, S. Weißmantel, Appl. Phys. A 125, 172 (2019)CrossRefGoogle Scholar
  14. 14.
    J. Mildner, C. Sarpe, N. Götte, M. Wollenhaupt, T. Baumert, Appl. Surf. Sci. 302, 291 (2014)CrossRefADSGoogle Scholar
  15. 15.
    D.J. Förster, S. Faas, S. Gröninger, F. Bauer, A. Michalowski, R. Weber, T. Graf, Appl. Surf. Sci. 440, 926 (2018)CrossRefADSGoogle Scholar
  16. 16.
    M.E. Povarnitsyn, T.E. Itina, K.V. Khishchenko, P.R. Levashov, Phys. Rev. Lett. 103, 195002 (2009)CrossRefADSGoogle Scholar
  17. 17.
    N.M. Bulgakova, A.V. Bulgakov, Appl. Phys. A 73, 199 (2001)CrossRefADSGoogle Scholar
  18. 18.
    Yong Jee, Michael F. Becker, Rodger M. Walser, J. Opt. Soc. Am. B 5, 648 (1988)CrossRefADSGoogle Scholar
  19. 19.
    P. Mannion, J. Magee, E. Coyne and G. M. O’Connor, (SPIE, 2002) p. 470Google Scholar
  20. 20.
    M. Hashida, A. Semerok, O. Gobert, G. Petite, Y. Izawa, J. Wagner, Appl. Surf. Sci. 197–198, 862 (2002)CrossRefADSGoogle Scholar
  21. 21.
    B.N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, A. Tünnermann, Appl. Phys. A Mater. Sci. Process. 63, 109 (1996)CrossRefADSGoogle Scholar
  22. 22.
    S. Preuss, A. Demchuk, M. Stuke, Appl. Phys. A Mater. Sci. Process. 61, 33 (1995)CrossRefADSGoogle Scholar
  23. 23.
    G. Raciukaitis, J. Laser Micro/Nanoeng. 4, 186 (2009)CrossRefGoogle Scholar
  24. 24.
    T.Y. Choi, C.P. Grigoropoulos, J. Appl. Phys. 92, 4918 (2002)CrossRefADSGoogle Scholar
  25. 25.
    S. Fang, L. Llanes, S. Klein, C. Gachot, A. Rosenkranz, D. Bähre, F. Mücklich, IOP Conf. Ser. Mater. Sci. Eng. 258, 012006 (2017)CrossRefGoogle Scholar
  26. 26.
    H.S. Carslaw, Conduction of heat in solids, 2nd edn. (Clarendon Press, Oxford, 1959)Google Scholar
  27. 27.
    E. Beyer, K. Wissenbach, Oberflächenbehandlung mit Laserstrahlung, Laser in Technik und Forschung (Springer, Berlin, 1998)CrossRefGoogle Scholar
  28. 28.
    J. Penczak, R. Kupfer, I. Bar, R.J. Gordon, Spectrochim. Acta Part B Atomic Spectrosc. 97, 34 (2014)CrossRefADSGoogle Scholar
  29. 29.
    J.M. Liu, Opt. Lett. 7, 196 (1982)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Applied Sciences MittweidaMittweidaGermany

Personalised recommendations