Advertisement

Applied Physics A

, 125:461 | Cite as

Improvement of rear damage of thin fused silica by liquid-assisted femtosecond laser cutting

  • Xiaoyan Sun
  • Jianfen Zheng
  • Chang Liang
  • Youwang HuEmail author
  • Hongmin Zhong
  • Ji’an Duan
Article

Abstract

Rear damage around cutting edge reduces its mechanical strength, which confines the application of femtosecond (fs) laser cutting thin fused silica. In this paper, we report a method by liquid-assisted cutting to minimize the damage. The surface morphology and area of damage are investigated. It is found that the damage can be decreased by altering the polarization from perpendicular (S-polarization) to be parallel (P-polarization) to the plane incidence, owing to the decrease of reflectivity on the boundary during fs laser cutting. Based on this theory, we further reduce the reflection on the rear side of the glass by adding water. Experienced twice scans, the damage area per unit length along cutting direction can be reduced from 41.84 to 1.88 μm2 by water cutting. This method can open up prospects for high precision fabrication of thin transparent material.

Notes

Acknowledgement

Parts of this work were funded by the National Key R&D Program of China (2017YFB1104800), the National Natural Science Foundation of China (Grant nos. 51875584, 51875585, 51475482, 51475481). And the Fundamental Research Funds for Central South University. (Grant no. 502211825).

References

  1. 1.
    M.D. Perry, B.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, A.M. Rubenchik, J Appl Phys 85(9), 6803–6810 (1999)CrossRefADSGoogle Scholar
  2. 2.
    A.B. Yakar, R.L. Byer, J Appl Phys 96(9), 5316–5323 (2004)CrossRefADSGoogle Scholar
  3. 3.
    M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, S. Juodkazis, Light Sci. Appl. 5(8), e16133 (2016)CrossRefADSGoogle Scholar
  4. 4.
    X.W. Cao, Q.D. Chen, H. Fan, L. Zhang, S. Juodkazis, H.B. Sun, Nanomaterials 8(5), 287 (2018)CrossRefGoogle Scholar
  5. 5.
    J. Ni, C. Wang, C. Zhang, Y. Hu, L. Yang, Z. Lao, B. Xu, J. Li, D. Wu, J. Chu, Light Sci. Appl. 6(7), e17011 (2017)CrossRefADSGoogle Scholar
  6. 6.
    Y.L. Zhang, Q.D. Chen, H. Xia, H.B. Sun, Nano Today 5(5), 435–448 (2010)CrossRefGoogle Scholar
  7. 7.
    Y. Cheng, K. Sugioka, K. Midorikawa, Opt. Lett. 29(17), 2007–2009 (2004)CrossRefADSGoogle Scholar
  8. 8.
    L. Guo, H. Xia, H.T. Fan, Y.L. Zhang, Q.D. Chen, T. Zhang, H.B. Sun, Opt. Lett. 35(10), 1695 (2010)CrossRefADSGoogle Scholar
  9. 9.
    E. Mazur, Nat. Photonics 2(4), 219–225 (2008)CrossRefADSGoogle Scholar
  10. 10.
    M. Yamaji, H. Kawashima, J. Suzuki, T. Shuhei, Appl. Phys. Lett. 93(4), 041116 (2008)CrossRefADSGoogle Scholar
  11. 11.
    M. Liu, Y. Hu, X. Sun, C. Wang, J. Zhou, X. Dong, Appl. Phys. A 123(1), 99 (2017)CrossRefADSGoogle Scholar
  12. 12.
    D. Chu, X. Sun, X. Dong, K. Yin, Z. Luo, G. Chen, J. Phys. D Appl. Phys. 50(46), 465306 (2017)CrossRefGoogle Scholar
  13. 13.
    Y. Bellouard, A. Said, M. Dugan, P. Bado, Opt. Express 12(10), 2120–2129 (2004)CrossRefADSGoogle Scholar
  14. 14.
    S. Nolte, Proc. SPIE 4440(1), 152–160 (2001)MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    S. Nisar, L. Li, M.A. Sheikh, J. Laser Appl. 25(4), 042010 (2013)CrossRefADSGoogle Scholar
  16. 16.
    M. Sun, U. Eppelt, C. Hartmann, W. Schulz, J. Zhu, Z. Lin, Opt. Laser Technol. 80, 227–236 (2016)CrossRefADSGoogle Scholar
  17. 17.
    S. Park, Y. Kim, J. You, S.W. Kim, CIRP Ann. Manuf. Technol. 66(1), 535–538 (2017)CrossRefGoogle Scholar
  18. 18.
    B.Y. Adela, R.L. Byer, A. Harkin, J. Ashmore, H.A. Stone, Appl. Phys. Lett. 83(15), 3030–3032 (2003)CrossRefADSGoogle Scholar
  19. 19.
    A.A. Ionin, S.I. Kudryashov, L.V. Seleznev, D.V. Sinitsyn, T. Apostolova, J. Opt. Technol. 81(5), 262 (2014)CrossRefGoogle Scholar
  20. 20.
    H. Shin, D. Kim, Opt. Laser Technol. 102, 1–11 (2018)CrossRefADSGoogle Scholar
  21. 21.
    X. Sun, D. Cui, Y. Hu, D. Chu, G. Chen, J. Yu, J. Zhou, J. Duan, Chin. Opt. Lett. 16(10), 101402 (2018)CrossRefADSGoogle Scholar
  22. 22.
    J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, Appl. Phys. Lett. 91(8), 1559 (2007)CrossRefGoogle Scholar
  23. 23.
    J.R. Aldana, C. Méndez, L. Roso, P. Moreno, J. Phys. D Appl. Phys. 38(16), 2764–2768 (2005)CrossRefADSGoogle Scholar
  24. 24.
    J.R. Aldana, C. Méndez, L. Roso, Opt. Express 14(3), 1329–1338 (2006)CrossRefADSGoogle Scholar
  25. 25.
    N.M. Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, E.E.B. Campbell, Phys. Rev. B 69(5), 054102 (2004)CrossRefADSGoogle Scholar
  26. 26.
    M. Sun, U. Eppelt, S. Russ, C. Hartmann, C. Siebert, J. Zhu, Opt. Express 21(7), 7858 (2013)CrossRefADSGoogle Scholar
  27. 27.
    S. Russ, C. Siebert, U. Eppelt, C. Hartmannc, B. Faißtb, W. Schulzc, Process. SPIE 8608(3), 4631–4638 (2013)ADSGoogle Scholar
  28. 28.
    B. Chimier, O. Uteza, M. Sentis, T. Itina, P. Lassonde, F. Légaré, Phys. Rev. B 84(9), 2669–2674 (2011)CrossRefGoogle Scholar
  29. 29.
    L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzorzakis, Phys. Rev. Lett. 89(18), 186601 (2002)CrossRefADSGoogle Scholar
  30. 30.
    S.M. Klimentov, T.V. Kononenko, P.A. Pivovarov, S.V. Garnov, V. Koflov, D. Breitling, F. Dausinger, Process. SPIE 5121(1), 77–86 (2003)CrossRefADSGoogle Scholar
  31. 31.
    K. Venkatakrishnan, B. Tan, P. Stanley, N.R. Sivakumar, J. Appl. Phys. 92(3), 1604 (2002)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical EngineeringCentral South UniversityChangshaChina

Personalised recommendations