Applied Physics A

, 125:463 | Cite as

Spin polarization calculations and related properties of the surfaces of CoVTe alloy and interface with a BeTe semiconductor

  • Moaid K. Hussain
  • Kai lun YaoEmail author


Previous calculations indicate that the CoVTe half-Heusler alloy appears half-metallic (HM) with spin polarization equal to 100%. We predict the spin polarisation and related alloy properties for the CoVTe (001), (111), and (110) surfaces and interface with a BeTe semiconductor. All the calculations were based on the generalized gradient approximation (GGA) with the Clb structure, using a first-principles investigation. We find a weak relaxation with (001) terminations, meaning the two terminations are stable and have stronger relaxations with the V (111) surface. The (001) V–Te surface has half-metallicity (HM) preserved with the HM energy gap of 0.22 eV and full spin polarisation, so the surface is useful for applications in the field of spintronics when using thin films, while other surfaces showed a high spin polarisation with values of 85–96%. For The CoVTe/BeTe interface demonstrates a weak relaxation for both structures. For VTe–Te*, the HM is destroyed and the minority spin is close to the Fermi level, with a higher spin polarization equal to 93%. The VTe–Be configuration retains HM, suggesting it is a good candidate for spintronic applications. The values of the magnetic moment for the surface and interface are calculated because these values may change when used as a thin film.



  1. 1.
    R. de Groot, F. Mueller, P. Van Engen, K. Buschow, New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024–2027 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    I. Žutić, J. Fabian, S. Samoa, Spintronics: fundamentals and application. Rev. Mod. Phys. 76, 323–410 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    J.D. Boeck, W.V. Roy, J. Das et al., Technology and materials issues in semiconductor- based magneto electronics. Semi. Sci. Tech. 17, 342–354 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    A. Hirohata, J. Sagar, L. Lari, L. Fleet, V. Lazarov, Heusler-alloy films for spintronic devices. Appl. Phys. A 111, 423–430 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    A. Hirohata, K. Takanashi, Future perspectives for spintronic devices. J. Phys. D Appl. Phys. 47, 193001 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. Stormer, Ultrahigh electron mobility in suspended grapheme. Solid State Commun. 146, 351 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    G. Hu, Y. Suzuki, Negative spin polarization of Fe3O4 in magnetite/manganite-based junctions. Phys. Rev. Lett. 89, 276601 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    J. Wei, N. Yeh, R. Vasquez, Tunneling evidence of half-metallic in La0.7Ca0.3MnO3. Phys. Rev. Lett. 79, 5150 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    Z. Liu, H. Liu, X. Zhang, X. Zhang, J. Xiao, Z. Zhu, X. Dai, G. Liu, J. Chen, G. Wu, Large negative magnetoresistance in quaternary Heusler alloy Ni50Mn8Fe17Ga25 melt-spun ribbons”. Appl. Phys. Lett. 86, 18 (2005)Google Scholar
  10. 10.
    M. Hussain, O. Hassan, A. Algubili, Investigations of the electronic and magnetic structures of Zr2NiZ (Z = Ga, In, B) Heusler compounds: first principles study. J. Electro Mater 47, 6221–6228 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    M. Hussain, G. Gao, K. Yao, Half-metallic properties of the new Ti 2 YPb(Y = Co, Fe) Heusler alloys. IJMPB 29, 1550175 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    W. Han, R. Kawakami, M. Gmitra, J. Fabian, Graphene spintronics. Nat. Nanotechnol. 9, 794 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    M. Hussain, G. Gao, K. Yao, Half-metallic properties in the new Ti2NiB Heusler alloy. J. Supercond. Nov. Magn. 28, 3285–3291 (2015)CrossRefGoogle Scholar
  14. 14.
    J. Kübler, G. Fecher, C. Felser, Understanding the trend in the Curie temperatures of Co2-based Heusler compounds: Ab initio calculations. Phys. Rev. B. 76, 024414 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    P. Brown, K. Neumann, P. Webster, K. Ziebeck, The magnetization distributions in some Heusler alloys proposed as half-metallic ferromagnets. J. Phys. D Appl. Phys. 12, 1827 (2000)Google Scholar
  16. 16.
    M. Hussain, K. Inad, Theoretical study of surface properties of new (0 0 1)- and (1 1 1)-surface YCoCrGe quaternary Heusler compounds. Thin Solid Films 663, 100–104 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    M. Hussain, G. Gao, K. Yao, Investigations of the electronic and magnetic structures at Heusler alloy surface: Co2TiGe (0 0 1). J. Electro Spectro Relat. Phenom. 203, 45–50 (2015)CrossRefGoogle Scholar
  18. 18.
    I. Galanakis, P.H. Dederichs, N. Papanikolaou, Origin and properties of the gap in the half-ferromagnetic Heusler alloys. Phys. Rev. B 66, 134428 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    H. Huang, S. Luo, K. Yao, First-principles investigation of the electronic structure and magnetism of Heusler alloys CoMnSb and Co2MnSb. Phys. B 406, 1368–1373 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    F. Casper, C. Felser, R. Seshadri, P. Sebastian, r P¨ottgen, Searching for hexagonal analogues of the Half-metallic half-Heusler XYZ compounds. J. Phys. D: Appl. Phys. 41, 035002 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    M. Monroe, R. Khenata, H. Baltache, G. Murtaza, M. Abu-Jafar, A. Bouhemadou, S. BinOmran, D. Roached, Study of structural, electronic and magnetic properties of caffeine and Co2FeIn Heusler alloys. J. Magn. Magn. Mater. 394, 404–409 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    L. Feng, E.K. Liu, W. Zhang, W. Wang, G. Wu, First-principles investigation of half-metallic ferromagnetism of half-Heusler compounds XYZ. J. Magn. Magn. Mater. 351, 92–97 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    M. Zhang, X. Dai, H. Hu, G. Liu, Y. Cui, Z. Liu, J. Chen, J. Wang, G. Wu, Search for new half-metallic ferromagnets in semiHeusler alloys NiCrM (M = P, As, Sb, S, Se and Te). J. Phys. Condens. Matter. 15, 7891 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    M. Hussain, Investigations of the electronic and magnetic properties of newly (001) surface LiCrS and LiCrSe half-Heusler compounds, appl. Phys. A 4, 124 (2018)Google Scholar
  25. 25.
    M. Hussain, K. Yao, Surface properties of the half-metallicity in ternary compounds: Fe(Cr, Mn)As based on different correlations. J. Magn. Magn. Mater. 478, 227–233 (2019)ADSCrossRefGoogle Scholar
  26. 26.
    S. Harrington, A. Rice, T. Brown-Heft, B. Bonef, A. Sharan, A. McFadden, J. Logan, M. Pendharkar, M. Feldman, O. Mercan, A. Petukhov, A. Janotti, L. Arslan, C. Palmstrøm, Growth, electrical, structural, and magnetic properties of half-Heusler CoTi1-xFexSb. Phys. Rev. Matter. 2, 014406 (2018)Google Scholar
  27. 27.
    S. Glover, T. Saerbeck, B. Kuerbanjiang, A. Ghasemi, D. Kepaptsoglou, Q. Ramasse, S. Yamada, K. Hamaya, T. Hase, V. Lazarov, G. Bell, Magnetic and structural depth profiles of Heusler alloy Co2FeAl0.5Si0.5 epitaxial films on Si (111). J. Phys. Cond. Matt. 30, 065801 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    B. Kuerbanjiang, C. Love, D. Kepaptsoglou, Z. Nedelkoski, S. Yamada, C. Ghasemi, Q. Ramasse, K. Hamaya, S.A. Cavill, V. Lazarov, Effect of annealing on the structure and magnetic properties of Co2FeAl0.5Si0.5 thin films on Ge(111). J. Alloys Compd. 748, 323–327 (2018)CrossRefGoogle Scholar
  29. 29.
    M. Sicot, P. Turban, S. Andrieu, A. Tagliaferri, C. DeNadai, N.B. Brookes, F. Bertran, F. Fortuna, Spin polarization at the NiMnSb/MgO(1 0 0) interface. J. Magn. Magn. Mater. 303, 54–59 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    I. Galanakis, M. Ležaić, G. Bihlmayer, S. Blügel, Interface properties of NiMnSb/InP and NiMnSb/GaAs contacts, phys. Rev. B 71, 214431 (2005)CrossRefGoogle Scholar
  31. 31.
    H. Han, W. Hu, G. Gao, K. Yao, Preserving stable 100% spin polarization at (111) heterostructures of half-metallic Heusler alloy Co2VGa with semiconductor PbS. J. Appl. Phys. 112, 083710 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    S. YuanLin, X. BaoYang, Y. JunZhao, First-principle prediction of robust half-metallic Te-based half-Heusler alloys. J. Magn. Magn. Mater. 350, 119–123 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    M. Segall, P. Lindan, M. Probert, C. Pickard, P. Hasnip, S. Clark, M. Payne, First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter. 14, 2717 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    D. Singh, Planes waves, pseudo-potentials and the LAPW method (Kluwer Academic Publishers, Boston, 1994)CrossRefGoogle Scholar
  35. 35.
    J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    S.H. Wei, A. Zunger, Electronic structure and phase stability of LiZnAs: a half ionic and half covalent tetrahedral semiconductor. Phys. Rev. Lett. 56, 528 (1986)ADSCrossRefGoogle Scholar
  37. 37.
    F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. 30, 244–247 (1944)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    I. Galanakis, P.H. Dederichs, N. Papanikolaou, Slater-Pauling behavior of the half-ferromagnetic full-Heusler alloys. Phys. Rev. B 66, 174429 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    T. Block, M. Carey, B. Gurney, O. Jepsen, Band-structure calculations of the half-metallic ferromagnetism and structural stability of full- and half-Heusler phases. Phys. Rev. B 70, 205114 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    B. Bialek, J. Lee, Half-metallic properties of the (1 1 0) surface of alkali earth metal monosilicides in the zinc blende phase Semicond. Sci. Technol. 26, 125018 (2011)ADSGoogle Scholar
  41. 41.
    B. Wu, H. Yuan, A. Kuang, H. Chen, Y. Feng, Thermodynamic stability, magnetism and half-metallicity of Heusler alloy Co2MnX(X = Si, Ge, Sn)(1 0 0) surface. Appl. Surf. Sci. 258, 4945–4951 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    N. Ghaderi, S.J. Hashemifar, H. Akbarzadeh, First principle study of Co2MnSi/GaAs(001) heterostructures. J. Appl. Phys. 102, 074306 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    J. Attema, G. de Wijs, R. de Groot, The continuing drama of the half-metal/semiconductor interface. J. Phys. D Appl. Phys. 39, 793 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    H. Wang, M. Przybylski, W. Kuch, I. Chelaru, L.J. Wang, Y.F. Lu, J. Barthel, H.L. Meyerheim, J. Kirschner, Magnetic properties and spin polarization of Co2 MnSi Heusler alloy thin films epitaxially grown on GaAs(001) Phys. Rev. B 71, 144416 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.AL-Hussain University CollegeKerbalaIraq
  2. 2.Department of PhysicsHuazhong University of Science and Technology, and National High Field CenterWuhanChina

Personalised recommendations