Advertisement

Applied Physics A

, 125:458 | Cite as

Temperature-dependent AC conductivity and dielectric and impedance properties of ternary In–Te–Se nanocomposite thin films

  • Pandian Mannu
  • Matheswaran PalanisamyEmail author
  • Gokul Bangaru
  • Sathyamoorthy Ramakrishnan
  • Asokan Kandasami
  • Pawan Kumar
Article
  • 25 Downloads

Abstract

The temperature- and frequency-dependent AC conductivity and dielectric and impedance properties of thermally evaporated ternary In–Te–Se nanocomposite thin films were measured in the temperature range from 100 to 300 K with the frequency range of 20 kHz–2 MHz. The measured dielectric constant (ε′), loss tangent (tanδ), and the ac electrical conductivity (σac) values are considerably sensitive to the frequency and temperature. The variations in ε′, ε″ and tanδ characteristics confirm the interfacial polarization. The values of C and ε′ decrease with frequency, while σac increases with both temperature and frequency. The estimated activation energy is found to decrease with increase in temperature. Further, the frequency dependence real (Z′) and imaginary parts (Z″) of the impedance spectra of the sample depend on the dielectric relaxation process. The Nyquist plot shows that the radius of the semicircular arc decreases with temperature and reveals a temperature-dependent relaxation process. The mechanism responsible for thermally assisted AC conduction can be due to the electronic hopping of charge carriers.

Notes

Acknowledgements

The author greatly acknowledges the Inter University Accelerator Centre (IUAC) New Delhi, for providing financial support through the project UFUP-57306.

References

  1. 1.
    Z. Zheng, J. Yao, G. Yang, A.C.S. Appl, Mater. Interfaces 9, 7288–7296 (2017).  https://doi.org/10.1021/acsami.6b16323 CrossRefGoogle Scholar
  2. 2.
    J.O. Island, S.I. Blanter, M. Buscema, H.S.J. Van Der Zant, A. Castellanos-Gomez, Nano Lett. 15, 7853–7858 (2015).  https://doi.org/10.1021/acs.nanolett.5b02523 CrossRefGoogle Scholar
  3. 3.
    W. Feng, W. Zheng, X. Chen, G. Liu, W. Cao, P. Hu, Chem. Mater. 27, 983–989 (2015).  https://doi.org/10.1021/cm504268j CrossRefGoogle Scholar
  4. 4.
    H. Lee, Y.K. Kim, D. Kim, D.H. Kang, IEEE Trans. Magn. 41, 1034–1036 (2005).  https://doi.org/10.1109/TMAG.2004.842032 CrossRefGoogle Scholar
  5. 5.
    A. Politano, D. Campi, M. Cattelan, I. Ben Amara, S. Jaziri, A. Mazzotti, A. Barinov, B. Gürbulak, S. Duman, S. Agnoli, L.S. Caputi, G. Granozzi, A. Cupolillo, Sci. Rep. 7, 1–11 (2017).  https://doi.org/10.1038/s41598-017-03186-x CrossRefGoogle Scholar
  6. 6.
    P. Nayebi, M. Emami-razavi, E. Zaminpayma, J. Phys. Chem. 120, 4589–4595 (2016).  https://doi.org/10.1021/acs.jpcc.5b10749 CrossRefGoogle Scholar
  7. 7.
    M.M. El-Nahass, A.A. Attia, G.F. Salem, H.A.M. Ali, M.I. Ismail, Phys. B 434, 89–94 (2014).  https://doi.org/10.1016/j.physb.2013.10.049 CrossRefGoogle Scholar
  8. 8.
    A. Sharmaa, N. Mehta, RSC Adv. 7, 19085 (2017).  https://doi.org/10.1039/c7ra00010c CrossRefGoogle Scholar
  9. 9.
    N. Shukla, D.K. Dwivedi, J. Asian Ceram. Soc. 4, 178–184 (2016).  https://doi.org/10.1016/j.jascer.2016.02.003 CrossRefGoogle Scholar
  10. 10.
    C. Dohare, M.M.A. Imran, N. Mehta, J. Asian Ceram. Soc. 4, 252–258 (2016).  https://doi.org/10.1016/j.jascer.2016.04.003 CrossRefGoogle Scholar
  11. 11.
    E. Abd El-Wahabb, A.M. Farid, A.M. Shakra, Appl. Phys. A. 124, 666 (2018).  https://doi.org/10.1007/s00339-018-2098-z CrossRefGoogle Scholar
  12. 12.
    N. Sharma, B.S. Patial, N. Thakur, Appl. Phys. A 122, 209 (2016).  https://doi.org/10.1007/s00339-016-9728-0 CrossRefGoogle Scholar
  13. 13.
    N.F. Mott, Conduction in non-crystalline materials, 2nd edn. (Clarendon Press, Oxford, 1993)Google Scholar
  14. 14.
    A.S. Hassanien, J. Alloys Compd. 671, 566–578 (2016).  https://doi.org/10.1016/j.jallcom.2016.02.126 CrossRefGoogle Scholar
  15. 15.
    S.S. Fouad, H.E. Atyia, J. Alloys Compd. 688, 1206–1213 (2016).  https://doi.org/10.1016/j.jallcom.2016.07.091 CrossRefGoogle Scholar
  16. 16.
    J. Sharma, S. Kumar, Turk. J. Phys. 35, 349–358 (2011).  https://doi.org/10.3906/fiz-1003-9 CrossRefGoogle Scholar
  17. 17.
    J. Sharma, S. Kumar, Glob. J. Sci. Front. Res. Phys. Space Sci. 13, 1 (2013)Google Scholar
  18. 18.
    H. Kumar, A. Sharma, N. Mehta, Mater. Lett. 121, 194–197 (2014).  https://doi.org/10.1016/j.matlet.2014.01.146 CrossRefGoogle Scholar
  19. 19.
    N. Chandel, N. Mehta, A. Kumar, Solid State Sci. 13, 257–262 (2011).  https://doi.org/10.1016/j.solidstatesciences.2010.11.025 CrossRefGoogle Scholar
  20. 20.
    N. Chandel, N. Mehta, A. Kumar, Curr. Appl. Phys. 12, 405–412 (2012).  https://doi.org/10.1016/j.cap.2011.07.038 CrossRefGoogle Scholar
  21. 21.
    C. Dohare, N. Mehta, A. Kumar, Mater. Chem. Phys. 127, 208–213 (2011).  https://doi.org/10.1016/j.matchemphys.2011.01.067 CrossRefGoogle Scholar
  22. 22.
    B.S. Patial, N. Neha, S.K. Thakur, Tripathi. Int. J. Adv. Res. Phys. Sci. 1, 9–16 (2014)Google Scholar
  23. 23.
    M. Pandian, P. Matheswaran, B. Gokul, R. Sathyamoorthy, R. Meena, K. Asokan, AIP Adv. 8, 115015 (2018).  https://doi.org/10.1063/1.5057734 CrossRefGoogle Scholar
  24. 24.
    M. Pandian, P. Matheswaran, B. Gokul, R. Sathyamoorthy, K. Asokan, Appl. Surf. Sci. 449, 55–67 (2018).  https://doi.org/10.1016/j.apsusc.2018.01.027 CrossRefGoogle Scholar
  25. 25.
    P. Matheswaran, R. Sathyamoorthy, R. Saravanakumar, S. Velumani, Mater. Sci. Eng. B. 174, 269–272 (2010).  https://doi.org/10.1016/j.mseb.2010.03.008 CrossRefGoogle Scholar
  26. 26.
    N. Shiwakoti, A. Bobby, K. Asokan, B. Antony, Mater. Sci. Semicond. Process. 42, 378–382 (2016).  https://doi.org/10.1016/j.mssp.2015.11.010 CrossRefGoogle Scholar
  27. 27.
    A. Tataroglu, S. Altındal, M.M. Bulbul, Microelectron. Eng. 81, 140–149 (2005).  https://doi.org/10.1016/j.mee.2005.04.008 CrossRefGoogle Scholar
  28. 28.
    R. Padma, B.P. Lakshmi, V.R. Reddy, Superlattices Microstruct. 60, 358 (2013).  https://doi.org/10.1016/j.spmi.2013.05.014 CrossRefGoogle Scholar
  29. 29.
    C.J. Ridge, P.J. Harrop, D.S. Campbell, Thin Solid Films 2, 413–422 (1968).  https://doi.org/10.1016/0040-6090(68)90055-2 CrossRefGoogle Scholar
  30. 30.
    T.I. Koba, T. Wagner, P.J.S. Ewen, A.E. Owen, Philos. Mag. B 71, 311–318 (1995).  https://doi.org/10.1080/13642819508239036 CrossRefGoogle Scholar
  31. 31.
    C.G. Koops, Phys. Rev. 83, 121–124 (1951).  https://doi.org/10.1103/PhysRev.83.121 CrossRefGoogle Scholar
  32. 32.
    F. Argall, A.K. Jonscher, Thin Solid Films (1968).  https://doi.org/10.1016/0040-6090(68)90002-3 CrossRefGoogle Scholar
  33. 33.
    H.M. Zeyada, M.M. Makhlouf, Appl. Phys. A 119, 1109–1118 (2015).  https://doi.org/10.1007/s00339-015-9076-5 CrossRefGoogle Scholar
  34. 34.
    H.M. Zeyada, M.M. El-Nahass, M.M. Makhlouf, Curr. Appl. Phys. 11, 1326–1331 (2011).  https://doi.org/10.1016/j.cap.2011.03.074 CrossRefGoogle Scholar
  35. 35.
    H. Birey, Dielectric properties of aluminum oxide films. J. Appl. Phys. 49, 2898 (1978).  https://doi.org/10.1063/1.325174 CrossRefGoogle Scholar
  36. 36.
    Y. Şafak-Asar, T. Asar, Ş. Altindal, S. Özçelik, J. Alloys Compd. 628, 442–449 (2014).  https://doi.org/10.1016/j.jallcom.2014.12.170 CrossRefGoogle Scholar
  37. 37.
    J.M. Stevels, in Electrical Conductivity II/Elektrische Leitungsphänomene II. Handbuch der Physik/Encyclopedia of Physics, vol. 20 (Springer, Berlin, 1997), p. 350.  https://doi.org/10.1007/978-3-642-45859-0_3 CrossRefGoogle Scholar
  38. 38.
    A.M. Farid, H.E. Atyia, N.A. Hegab, Vacuum 80, 284 (2005).  https://doi.org/10.1016/j.vacuum.2005.05.003 CrossRefGoogle Scholar
  39. 39.
    M. Ram, S. Chakrabarti, J. Alloys Compd. 462, 214–219 (2008).  https://doi.org/10.1016/j.jallcom.2007.08.001 CrossRefGoogle Scholar
  40. 40.
    E.B. Fleisher, C.K. Miller, L.R. Webb, J. Am. Soc. 86, 2342 (1964)CrossRefGoogle Scholar
  41. 41.
    M.M. El-Nahass, H.M. Zeyada, E.M. El-Menyay, Eur. Phys. J. Appl. Phys. 48, 10301 (2010)Google Scholar
  42. 42.
    Anjali, B.S. Patial, S. Bhardwaj, A.M. Awasthi, N. Thakur, Phys. B. 523, 52–61 (2017).  https://doi.org/10.1016/j.physb.2017.08.001 CrossRefGoogle Scholar
  43. 43.
    K.M. Diederichsen, H.G. Buss, B.D. McCloskey, Macromolecules 50, 3831–3840 (2017).  https://doi.org/10.1021/acs.macromol.7b00423 CrossRefGoogle Scholar
  44. 44.
    S. Breuer, M. Wilkening, Dalton Trans. 47, 4105–4117 (2018).  https://doi.org/10.1039/C7DT04487A CrossRefGoogle Scholar
  45. 45.
    N. Mehta, A. Kumar, J. Phys. Chem. B 120, 1175–1182 (2016).  https://doi.org/10.1021/acs.jpcb.5b10441 CrossRefGoogle Scholar
  46. 46.
    G. Mohsin, M. Zulfequar, Acta Phys. Pol. A 128, 59–63 (2015).  https://doi.org/10.12693/APhysPola.128.59 CrossRefGoogle Scholar
  47. 47.
    N.A. Hegab, M.A. Afifi, H.E. Atyia, M.I. Ismael, Acta Phys. Pol. A 119, 416 (2011).  https://doi.org/10.12693/aphyspola.119.416 CrossRefGoogle Scholar
  48. 48.
    I.S. Yahia, N.A. Hegab, A.M. Shakra, A.M. Al-Ribaty, Phys. B. 407, 2476–2485 (2012).  https://doi.org/10.1016/j.physb.2012.03.049 CrossRefGoogle Scholar
  49. 49.
    P.S. Sahoo, A. Panigrahi, S.K. Patri, R.N.P. Choudhary, Mater. Sci. Pol. 28, 763 (2010).  https://doi.org/10.1016/j.physb.2014.06.036 CrossRefGoogle Scholar
  50. 50.
    R. Das, T. Sarkar, K. Mandal, J. Phys. D Appl. Phys. 45, 455002 (2012).  https://doi.org/10.1088/0022-3727/45/45/455002 CrossRefGoogle Scholar
  51. 51.
    B.P. Das, R.N.P. Choudhary, P.K. Mahapatra, Indian J. Eng. Mater. Sci. 15, 152 (2008)Google Scholar
  52. 52.
    J. Liu, C. Duan, W.N. Mei, R.W. Smith, J.R. Hardy, J. Appl. Phys. 98, 093703 (2005).  https://doi.org/10.1063/1.2125117 CrossRefGoogle Scholar
  53. 53.
    S. Sen, D.N. Bose, Solid State Commun. 50, 39–42 (1984).  https://doi.org/10.1016/0038-1098(84)90055-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Pandian Mannu
    • 1
  • Matheswaran Palanisamy
    • 1
    Email author
  • Gokul Bangaru
    • 1
  • Sathyamoorthy Ramakrishnan
    • 1
  • Asokan Kandasami
    • 2
  • Pawan Kumar
    • 3
  1. 1.Department of PhysicsKongunadu Arts and Science CollegeCoimbatoreIndia
  2. 2.Materials Science DivisionInter University Accelerator CentreNew DelhiIndia
  3. 3.Department of PhysicsGovernment CollegeBhiwaniIndia

Personalised recommendations