Advertisement

Applied Physics A

, 125:457 | Cite as

Performance analysis of AlGaAs/GaAs/InGaAs-based asymmetric long-wavelength QWIP

  • Md. Aref BillahaEmail author
  • Mukul K. Das
Article

Abstract

In this paper, the effect of active layer doping and the In concentration (y) of InyGa1–yAs-based asymmetric QWIP are studied. A theoretical model is developed for the study by including the effect of strain due to lattice mismatch between GaAs and InGaAs stepped QW and also including the effect of doping on Hartree potential. High absorption and, hence, enhanced responsivity is obtained by incorporating Indium. However, absorption coefficient decreases with the increasing In concentration (y). However, the performance of the asymmetric QWIP is still better than its symmetric QWIP. Moreover, dark current also reduces in asymmetric QWIP as compared to symmetric QWIP.

Notes

Acknowledgements

This work is partly supported by the Centre of Excellence in Renewable Energy, project under FAST, MHRD, Govt. of India (F. No. 5-6/2013-TS-VII) at Indian Institute of Technology (Indian School of Mines), Dhanbad, India.

References

  1. 1.
    R. Szweda, QWIPs–multi-spectral mine clearance and medical. III-Vs Rev. 18, 44 (2005)Google Scholar
  2. 2.
    S.D. Gunapala, S.V. Bandara, J.K. Liu, E.M. Luong, N. Stetson, C.A. Shott, J.J. Bock, S.B. Rafol, J.M. Mumolo, M.J. McKelvey, Long-wavelength 256 x256 GaAs/AlGaAs quantum well infrared photodetector (QWIP) palm-size camera. IEEE Trans. Electron. Dev. 47(2), 326–332 (2000)CrossRefADSGoogle Scholar
  3. 3.
    J. Moon, S.S. Li, J.H. Lee, A high performance quantum well infrared photodetector using superlattice-coupled quantum wells for long wavelength infrared detection. Infrared Phys. Tech. 44, 229–234 (2003)CrossRefADSGoogle Scholar
  4. 4.
    N. Zeiri, S. Abdi-Ben Nasrallah, N. Sfina, M. Said, Intersubband transitions in quantum well mid-infrared photodetectors. Infrared Phys. Technol. 64, 33–39 (2014)CrossRefADSGoogle Scholar
  5. 5.
    V. Guériaux, A. Nedelcu, P. Bois, Double barrier strained quantum well infrared photodetectors for the 3-5 µm atmospheric window. J. Appl. Phys. 105, 114515 (2009)CrossRefADSGoogle Scholar
  6. 6.
    A. Rajira, H. Akabli, A. Almaggousi, A. Abounadi, The non parabolicity and the enhancement of the intersubband absorption in GaAs/GaAlAs quantum wells. Superlattices Microstruct. 84, 192–197 (2015)CrossRefADSGoogle Scholar
  7. 7.
    N. Imam, E.N. Glytsis, T.K. Gaylord et al., Quantum-well infrared photodetector structure synthesis: methodology and experimental verification. J. Quantum Elec. 39, 468 (2003)CrossRefADSGoogle Scholar
  8. 8.
    J. Li, K.K. Choi, J.F. Klem, J.L. Reno, D.C. Tsui, High gain, broadband InGaAs/InGaAsP quantum well infrared photodetector. Appl. Phys. Lett. 89, 081128 (2006)CrossRefADSGoogle Scholar
  9. 9.
    F.D.P. Alves, J. Amorim, M. Byloos, H.C. Liu, A. Bezinger, M. Buchanan, N. Hanson, G. Karunasiri, Three band Quantum well infrared photodetector using interband and intersubband transitions. J. Appl. Phys. 103, 114515 (2008)CrossRefADSGoogle Scholar
  10. 10.
    Mehjabeen A. Khan, Akeed A. Pavel, Naz Islam, Intersubband transition in asymmetric quantum well infrared photodetector. IEEE Trans. Nanotech. 12(4), 521–523 (2013)CrossRefADSGoogle Scholar
  11. 11.
    A. Billaha, M.K. Das, Influence of doping on the performance of GaAs/AlGaAs QWIP for long wavelength applications. Opto-Electron. Rev. 24(1), 25–33 (2016)CrossRefADSGoogle Scholar
  12. 12.
    Y. Yang, H.C. Liu, W.Z. Shen, N. Li, W. Lu, Z.R. Wasilewski, M. Buchanan, Optimal doping density for quantum well infrared photodetector performance. J. Quantum Electr. 45(6), 623–628 (2009)CrossRefADSGoogle Scholar
  13. 13.
    C.W. Cheah, G. Karunasiri, L.S. Tan, Analysis of AlGaAs/GaAs/InGaAs n-type step multiple quantum wells for the optimization of normal incident absorption. Semicond. Sci. Technol. 17(9), 1028–1037 (2002)CrossRefADSGoogle Scholar
  14. 14.
    B.F. Levine, A. Zussmann, S.D. Gunapala, M.T. Asom, J.M. Kuo, W.S. Hobson, Photoexcited escape probability, optical gain, and noise in quantum well infrared photodetectors. J. Appl. Phys. 72, 4429–4443 (1992)CrossRefADSGoogle Scholar
  15. 15.
    E. Rosencher, B. Vinter, F. Luc, L. Thibaudeau, P. Bois, J. Nagle, Emission and capture of electrons in multiquantum-well structures. IEEE Trans. Quantum Electr. 30, 2875 (1994)CrossRefADSGoogle Scholar
  16. 16.
    L. Jedral, C. Edirisinghe, H. Ruda, A. Moore, B. Lent, Optical characterization of AlInGaAs/InGaAs quantum well structures on InGaAs substrates. J. Appl. Phys. 82, 375–379 (1997)CrossRefADSGoogle Scholar
  17. 17.
    I. Vurguftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001)CrossRefADSGoogle Scholar
  18. 18.
    Y. Hirayama, W.-Y. Choi, L.H. Peng, C.G. Fonstad, Absorption spectroscopy on room temperature excitonic transitions in strained layer InGaAs/InGaAlAs multiquantum-well strcutures. J. Appl. Phys. 74(1), 570–578 (1993)CrossRefADSGoogle Scholar
  19. 19.
    C.G. Van de Walle, Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 39(3), 1871–1883 (1989)CrossRefADSGoogle Scholar
  20. 20.
    I.S. Vasil’evskii, G.B. Galiev, E.A. Klimov, K. Požela, J. Požela, V. Jucienė, A. Sužiedėlis, N. Žurauskienė, S. Keršulis, V. Stankevič, Electron mobility and drift velocity in selectively doped InAlAs/InGaAs/InAlAs heterostructures. Semiconductors 45(9), 1169–1172 (2011)CrossRefADSGoogle Scholar
  21. 21.
    H. Schneider, H.C. Liu, Quantum well infrared photodetectors physics and applications (Springer-Verlag, New York, 2007)Google Scholar
  22. 22.
    R. Quay, C. Moglestue, V. Palankovski et al., A temperature dependent model for the saturation velocity in semiconductor materials. Mater. Sci. Semicond. Proc. 3, 149–155 (2000)CrossRefGoogle Scholar
  23. 23.
    S.D. Gunapala, B.F. Levine, L. Pfeiffer, K. West, Dependence of the performance of GaAs/AlGaAs quantum well infrared photodetectors on doping and bias. J. Appl. Phys. 69, 6517 (1991)CrossRefADSGoogle Scholar
  24. 24.
    K.L. Tsai, K.H. Chang, C.P. Lee, K.F. Huang, J.S. Tsang, H.R. Chen, Two-color infrared photodetector using GaAs/AlGaAs and strained InGaAs/AlGaAs multiquantum wells. Appl. Phys. Lett. 62, 3504 (1993)CrossRefADSGoogle Scholar
  25. 25.
    C. JungChi, S.L. Sheng, M.Z. Tidrow, P. Ho, M. Tsai, C.P. Lee, A voltage-tunable multicolor triple-coupled InGaAs/GaAs/AlGaAs quantum-well infrared photodetector for 8-12 µm detection. Appl. Phys. Lett. 69, 2412 (1996)CrossRefADSGoogle Scholar
  26. 26.
    S.R. Andrews, B.A. Miller, Experimental and theoretical studies of the performance of quantum-well infrared photodetectors. J. Appl. Phys. 70, 993 (1991)CrossRefADSGoogle Scholar
  27. 27.
    E. Pelve, F. Beltram, C.G. Bethea, B.F. Levine, V.O. Shen, S.J. Hsieh, R.R. Abbott, Analysis of the dark current in doped-well multiple quantum well AlGaAs infrared photodetector. J. Appl. Phys. 66, 5656 (1989)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringAsansol Engineering CollegeAsansolIndia
  2. 2.Department of Electronics EngineeringIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations