Advertisement

Applied Physics A

, 125:460 | Cite as

Characterisation and electrical conductivity of polytetrafluoroethylene/graphite nanoplatelets composite films

  • Y. M. Shulga
  • A. V. Melezhik
  • E. N. Kabachkov
  • F. O. Milovich
  • N. V. Lyskov
  • A. V. Irzhak
  • N. N. Dremova
  • G. L. Gutsev
  • A. MichtchenkoEmail author
  • A. G. Tkachev
  • Yogesh Kumar
Article

Abstract

Graphite nanoplatelets (GNPs), with a thickness of 3–10 graphene layers and lateral linear dimensions varying from 2 to 10 μm, were used to enhance the conductivity of polytetrafluoroethylene (PTFE) films. Ten composite films with the (GNPs) content of 0, 2, 3, 4, 5, 6, 8, 10, 15 and 20 wt% were obtained. These films were characterised using X-ray diffraction, infrared and Raman spectroscopy, scanning electron microscopy and X-ray photoelectron spectroscopy (XPS). The conductivity the conductivity of the composite film increases with an increase in GNP content from 0.00095 S cm−1 at 2% wt% of GNPs to 20.4 S cm−1 at 20% wt% of GNPs. Further, a chemical bond is formed between the graphite nanoplates and polymer chains according to the XPS spectra.

Notes

Acknowledgements

This work has been performed in the frame of the state task of the Russian Federation (state registration number 0089-2019-0008) using the equipment of the Multi-User Analytical Center of IPCP RAS and the Centre of Collective Usage of NUST MISIS. Partially this study was carried out with the use of resources of Competence Center of National Technology Initiative in IPCP RAS. The author (YK) acknowledges the financial support received from the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India (Sanction no. ECR/2016/001871) under the scheme Early Career Research Award.

References

  1. 1.
    K. Kalaitzidou, H. Fukushima, L.T. Drzal, Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 45, 1446–1452 (2007)CrossRefGoogle Scholar
  2. 2.
    K. Kalaitzidou, H. Fukushima, L.T. Drzal, A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos. Sci. Technol. 67, 2045–2051 (2007)CrossRefGoogle Scholar
  3. 3.
    K. Kalaitzidou, H. Fukushima, L.T. Drzal, Mechanical properties and morphological characterization of exfoliated graphite–polypropylene nanocomposites. Compos. A Appl. Sci. Manuf. 38, 1675–1682 (2007)CrossRefGoogle Scholar
  4. 4.
    K. Kalaitzidou, H. Fukushima, P. Askeland, L.T. Drzal, The nucleating effect of exfoliated graphite nanoplatelets and their influence on the crystal structure and electrical conductivity of polypropylene nanocomposites. J. Mater. Sci. 43, 2895–2907 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    W. Liu, I. Do, H. Fukushima, L.T. Drzal, Influence of processing on morphology, electrical conductivity and flexural properties of exfoliated graphite nanoplatelets–polyamide nanocomposites. Carbon Lett. 11, 279–284 (2010)CrossRefGoogle Scholar
  6. 6.
    B.W. Chieng, N.A. Ibrahim, W.M.Z.W. Yunus, M.Z. Hussein, V.S. Silverajah, Graphene nanoplatelets as novel reinforcement filler in Poly(lactic acid)/epoxidized palm oil green nanocomposites mechanical properties. Int. J. Mol. Sci. 13, 10920–10934 (2012)CrossRefGoogle Scholar
  7. 7.
    S. Chatterjee, F. Nafezarefi, N.H. Tai, L. Schlagenhauf, F.A. Nuesch, B.T.T. Chu, Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon 50, 5380–5386 (2012)CrossRefGoogle Scholar
  8. 8.
    M.M. Shokrieh, M. Esmkhani, H.R. Shahverdi, F. Vahedi, Effect of graphene nanosheets (GNS) and graphite nanoplatelets (GNP) on the mechanical properties of epoxy nanocomposites. Sci. Adv. Mater. 5, 1–7 (2013)CrossRefGoogle Scholar
  9. 9.
    S. Chandrasekaran, C. Seidel, K. Schulte, Preparation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite mechanical, electrical and thermal properties. Eur. Polym. J. 49, 3878–3888 (2013)CrossRefGoogle Scholar
  10. 10.
    J.-L. Zeng, S.-H. Zheng, S.-B. Yu, F.-R. Zhu, J. Gan, L. Zhu, Z.-L. Xiao, X.-Y. Zhu, Z. Zhu, L.-X. Sun, Preparation and thermal properties of palmitic acid/polyaniline/exfoliated graphite nanoplatelets form-stable phase change materials. Appl. Energy 115, 603–609 (2014)CrossRefGoogle Scholar
  11. 11.
    J. Gu, X. Yang, Z. Lv, N. Li, C. Liang, Q. Zhang, Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity. Int. J. Heat. Mass. Transf. 92, 15–22 (2016)CrossRefGoogle Scholar
  12. 12.
    Graphene nanoplatelets. https://www.cheaptubes.com/product-category/graphene-nanoplatelets/. Accessed 20 July 2018
  13. 13.
    Graphite nanoplatelets. https://www.nanoshel.com/product/graphite-nanoplatelets/. Accessed 20 July 2018
  14. 14.
    Graphene nanoplatelets. https://www.xgsciences.com/materials/graphene-nano-platelets/. Accessed 20 July 2018
  15. 15.
    Graphene nanoplatelets. https://www.knano.com.cn/en/index.aspx. Accessed 20 July 2018
  16. 16.
    V.A. Paganin, E.A. Ticianelli, E.R. Gonzalez, Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells. J. Appl. Elecrochem. 26, 297–304 (1996)Google Scholar
  17. 17.
    L.R. Jordan, A.K. Shukla, T. Behrsing, N.R. Avery, B.C. Muddle, M. Forsyth, Diffusion layer parameters influencing optimal fuel cell performance. J. Power Sources 86, 250–254 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    G.-G. Park, Y.-J. Sohn, T.-H. Yang, Y.-G. Yoon, W.-Y. Lee, C.-S. Kim, Effect of PTFE contents in the gas diffusion media on the performance of PEMFC. J. Power Sources 131, 182–187 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    M. Prasanna, H.Y. Ha, E.A. Cho, S.-A. Hong, I.-H. Oh, Influence of cathode gas diffusion media on the performance of the PEMFCs. J. Power Sources 131, 147–154 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    C. Lim, C.Y. Wang, Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell. Electrochim. Acta 49, 4149–4156 (2004)CrossRefGoogle Scholar
  21. 21.
    G. Lin, T.V. Nguyen, Effect of thickness and hydrophobic polymer content of the gas diffusion layer on electrode flooding level in a PEMFC. J. Electrochem. Soc. 152, A1942–A1948 (2005)CrossRefGoogle Scholar
  22. 22.
    J.F. Lin, J. Wetz, R. Ahmad, M. Thommes, A.M. Kannan, Effect of carbon paper substrate of the gas diffusion layer on the performance of proton exchange membrane fuel cell. Electrochim. Acta 55, 2746–2751 (2010)CrossRefGoogle Scholar
  23. 23.
    J. Suh, D. Bae, Mechanical properties of polytetrafluoroethylene composites reinforced with graphene nanoplatelets by solid-state processing. Compos. B 95, 317–323 (2016)CrossRefGoogle Scholar
  24. 24.
    V.N. Aderikha, A.P. Krasnov, A.V. Naumkin, V.A. Shapovalov, Effects of ultrasound treatment of expanded graphite (EG) on the sliding friction, wear resistance, and related properties of PTFE-based composites containing EG. Wear 386–387, 63–71 (2017)CrossRefGoogle Scholar
  25. 25.
    X. Cai, Z. Jiang, X. Zhang, T. Gao, K. Yue, X. Zhang, Thermal property improvement of polytetrafluoroethylene nanocomposites with graphene nanoplatelets. RSC Adv. 8, 11367–11374 (2018)CrossRefGoogle Scholar
  26. 26.
    A.D. Pienaar, L. van Rooyen, H. Bissett, J. Karger-Kocsis, Effect of graphene content on thermal degradation of PTFE. Braz. J. Therm. Anal. 6, 7–12 (2017)CrossRefGoogle Scholar
  27. 27.
    A.V. Melezhyk, A.G. Tkachev, Synthesis of graphene nanoplatelets from peroxosulfate graphite intercalation compounds. Nanosyst. Phys. Chem. Math. 5, 294–306 (2014)Google Scholar
  28. 28.
    A.V. Melezhyk, V.A. Kotov, A.G. Tkachev, Optical properties and aggregation of graphene nanoplatelets. J. Nanosci. Nanotechnol. 16, 1067–1075 (2016)CrossRefGoogle Scholar
  29. 29.
    A.V. Melezhik, V.F. Pershin, N.R. Memetov, A.G. Tkachev, Mechanochemical synthesis of graphene nanoplatelets from expanded graphite compound. Nanotechnol. Russ. 11, 421–429 (2016)CrossRefGoogle Scholar
  30. 30.
    J.J. Weeks, E.S. Clark, R.K. Eby, Crystal structure of the low temperature phase (11) of polytetrafluoroethylene. Polymer 22, 1480–1486 (1981)CrossRefGoogle Scholar
  31. 31.
    C.Y. Liang, S. Krimm, Infrared spectra of high polymers. III. Polytetrafluoroethylene and polychlorotrifluoroethylene. J. Chem. Phys. 25, 563–571 (1956)ADSCrossRefGoogle Scholar
  32. 32.
    Y.M. Shulga, V.N. Vasilets, D.P. Kiryukhin, D.N. Voylov, A. Sokolov, Polymer composites prepared by low-temperature post-irradiation polymerization of C2F4 in the presence of graphene-like material Synthesis and characterization. RSC Adv. 5, 9865–9874 (2015)CrossRefGoogle Scholar
  33. 33.
    F. Tuinstra, J.L. Koenig, Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970)ADSCrossRefGoogle Scholar
  34. 34.
    A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    A.C. Ferrari, Raman spectroscopy of graphene and graphite Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhães-Paniago, M.A. Pimenta, General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 88, 163106 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 9, 1276–1291 (2007)CrossRefGoogle Scholar
  38. 38.
    R.G. Brown, Vibrational spectra of polytetrafluoroethylene Effects of temperature and pressure. J. Chem. 40, 2900–2908 (1964)ADSGoogle Scholar
  39. 39.
    C.-K. Wu, M. Nicol, Raman spectra of high pressure phase and phase transition of polytetrafluoroethylene (teflon). Chem. Phys. Lett. 21, 153–157 (1973)ADSCrossRefGoogle Scholar
  40. 40.
    A. Gruger, A. Reges, T. Schmatko, P. Colombon, Nanostructure of Nafion membranes at different states of hydration. An IR and Raman study. Vib. Spectrosc. 26, 215–225 (2001)CrossRefGoogle Scholar
  41. 41.
    C. Du, N. Pan, High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology 17, 5314–5318 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    M. Arulepp, J. Leis, M. Latt, F. Miller, K. Rumma, E. Lust, A.F. Burke, The advanced carbide-derived carbon based supercapacitor. J. Power Sources 162, 1460–1466 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide. Carbon 49, 3019–3023 (2011)CrossRefGoogle Scholar
  44. 44.
    Y.M. Shulga, S.A. Baskakov, E.I. Knerelman, G.I. Davidova, E.R. Badamshina, N.Y. Shulga, E.A. Skryleva, A.L. Agapov, D.N. Voylov, A.P. Sokolov, V.M. Martynenko, Carbon nanomaterial produced by microwave exfoliation of graphite oxide new insights. RSC Adv. 4, 587–592 (2014)CrossRefGoogle Scholar
  45. 45.
    D.N. Voylov, A.L. Agapov, Y.M. Shulga, A.P. Sokolov, A.A. Arbuzov, Room temperature reduction of multilayer graphene oxide film on a copper substrate Penetration and participation of copper phase in redox reactions. Carbon 69, 563–570 (2014)CrossRefGoogle Scholar
  46. 46.
    G. Nanse, E. Papirer, P. Fioux, F. Moguet, A. Tressaud, Fluorination of carbon blacks an X-ray photoelectron spectroscopy study I a literature review of XPS studies of fluorinated carbons: XPS investigation of some reference compounds. Carbon 35, 175–194 (1997)CrossRefGoogle Scholar
  47. 47.
    D. Stauffer, A. Aharony, Introduction to percolation theory (UK Taylor & Francis, London, 1991)zbMATHGoogle Scholar
  48. 48.
    D.S. McLachlan, M. Blaszkiewicz, R.E. Newnham, Electrical Resistivity of Composites. J. Am. Ceram. Soc. 73, 2187–2203 (1990)CrossRefGoogle Scholar
  49. 49.
    X. Jing, W. Zhao, L. Lan, The effect of particle size on electric conducting percolation threshold in polymer/conducting particle composites. J. Mater. Sci. Lett. 19, 377–379 (2000)CrossRefGoogle Scholar
  50. 50.
    J.T. Fiske, H.S. Gokturk, D.M. Kalyon, Percolation in magnetic composites. J. Mater. Sci. 32, 5551–5560 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussian Federation
  2. 2.National University of Science and Technology MISISMoscowRussian Federation
  3. 3.Tambov State Technical UniversityTambovRussian Federation
  4. 4.Chernogolovka Scientific CenterRussian Academy of SciencesChernogolovkaRussian Federation
  5. 5.Department of PhysicsFlorida A&M UniversityTallahasseeUSA
  6. 6.Instituto Politécnico Nacional, SEPI-ESIME-ZacatencoCiudad de MexicoMexico
  7. 7.Department of PhysicsARSD College University of DelhiNew DelhiIndia

Personalised recommendations