Advertisement

Applied Physics A

, 125:456 | Cite as

Electrochemical surface modification of carbon for enhanced water electrolysis

  • Shankaracharya S. Zance
  • Subbiah RavichandranEmail author
Article

Abstract

This study reports the activity of porous carbon paper as an efficient oxygen-evolving catalyst. Toray Carbon paper, consisting of carbon fibres, exhibited high current density towards water oxidation after repeated cycling in the anodic region. This activity was due to electrochemical surface modification. X-ray photoelectron spectroscopy analysis showed that the carbon oxidizes to form oxygen rich functional groups, assisting the water oxidation. The surface was analysed by non- destructive Kelvin probe (work function) and Raman spectroscopy to support the enhanced electrocatalytic activity. Surface charge measurements (Zeta potential) were performed to support the surface oxidation. Obtained Zeta potentials were accounted for the surface carbon oxidation. It was found that increased work function of carbon paper after continual cycling in the anodic region increased the water splitting ability of carbon electrode. Herein, we observed that functional groups existing on carbon electrode after electrochemical oxidation exhibit excellent catalytic activity and may be a promising low cost material for OER.

Notes

Acknowledgements

Zance S S greatly acknowledges financial support from DST-INSPIRE. We thank K L N Phani, EEC division, CSIR-CECRI, for his assistance and guidance, Director, CSIR-CECRI for his constant support and encouragement, and also G. Sozhan, HOD, EIOC division for his continual support.

References

  1. 1.
    M.D. Merrill, R.C. Dougherty, J. Phys. Chem. C 112, 3655–3666 (2008)CrossRefGoogle Scholar
  2. 2.
    I.M. Sadiek, A.M. Mohammad, M.E. El-Shakre, M.I. Awad, M.S. El-Deab, B.E. El-Anadouli, Int. J. Electrochem. Sci. 7, 3350–3361 (2012)Google Scholar
  3. 3.
    M.W. Kanan, D.G. Nocera, Science 321, 1072–1075 (2008)CrossRefADSGoogle Scholar
  4. 4.
    W.C. Ellis, N.D. McDaniel, S. Bernhard, T.J. Collins, J. Am. Chem. Soc. 132, 10990–10991 (2010)CrossRefGoogle Scholar
  5. 5.
    W. Xu, K. Scott, J. Mater. Chem. 21, 12344–12351 (2011)CrossRefGoogle Scholar
  6. 6.
    J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, Science 334, 1383–1385 (2011)CrossRefADSGoogle Scholar
  7. 7.
    K.J. May, C.E. Carlton, K.A. Stoerzinger, M. Risch, J. Suntivich, Y.-L. Lee et al., J. Phys. Chem. Lett. 3, 3264–3270 (2012)CrossRefGoogle Scholar
  8. 8.
    Q. Yin, J.M. Tan, C. Besson, Y.V. Geletii, D.G. Musaev, A.E. Kuznetsov, Z. Luo, K.I. Hardcastle, C.L. Hill, Science 328, 342–345 (2010)CrossRefADSGoogle Scholar
  9. 9.
    Andrea Sartorel, Mauro Carraro, Gianfranco Scorrano, Rita De Zorzi, Silvano Geremia, Neal D. McDaniel et al., J. Am. Chem. Soc. 130, 5006–5007 (2008)CrossRefGoogle Scholar
  10. 10.
    C. Sens, I. Romero, M. Rodríguez, A. Llobet, T. Parella, J. Benet-Buchholz, J. Am. Chem. Soc. 126, 7798–7799 (2004)CrossRefGoogle Scholar
  11. 11.
    R. Isabel, R. Montserrat, S. Cristina, M. Joaquim, R.K. Mohan, F. Laia et al., Inorg. Chem. 47(6), 1824–1834 (2008)CrossRefGoogle Scholar
  12. 12.
    N.D. McDaniel, F.J. Coughlin, L.L. Tinker, S. Bernhard, J. Am. Chem. Soc. 130, 210–217 (2008)CrossRefGoogle Scholar
  13. 13.
    M. Biswal, A. Deshpande, S. Kelkar, S. Ogale, Chemsuschem 7, 883–889 (2014)CrossRefGoogle Scholar
  14. 14.
    C.R. Bruce, Ewan, and Olalekan D. Adeniyi. Energies 6, 1657–1668 (2013)CrossRefGoogle Scholar
  15. 15.
    Schroder DK (2006). Wiley-IEEE Press, NewYork, pp 526–532Google Scholar
  16. 16.
    T.J. Fabish, D.E. Schleifer, Carbon 22, 19–38 (1984)CrossRefGoogle Scholar
  17. 17.
    Tian G-L, Zhao M-Q, Yu D, Kong X-Y, Huang J-Q, Zhang Q et al (2014) Small 10(11), 1–9Google Scholar
  18. 18.
    Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, K. Hashimoto, Nat. Commun. 4, 1–7 (2013)Google Scholar
  19. 19.
    T.Y. Ma, S. Dai, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Ed 53, 7281–7285 (2014)CrossRefGoogle Scholar
  20. 20.
    M.S. Seehra, S. Bollineni, Int. J. Hydrog. Energy 34, 6078–6084 (2009)CrossRefGoogle Scholar
  21. 21.
    T.I.T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, N.M.D. Brown, Carbon 43, 153–161 (2005)CrossRefGoogle Scholar
  22. 22.
    L. Liu, Y. Qin, Z.-X. Guo, D. Zhu, Carbon 41, 331–335 (2003)CrossRefGoogle Scholar
  23. 23.
    Z.R. Yue, W. Jiang, L. Wang, S.D. Gardner, C.U. Pittman Jr., Carbon 37, 1785–1796 (1999)CrossRefGoogle Scholar
  24. 24.
    H.-T. Fang, C.-G. Liu, C. Liu, F. Li, M. Liu, H.-M. Cheng, Chem. Mater. 16, 5744–5750 (2004)CrossRefGoogle Scholar
  25. 25.
    Y. Yia, G. Weinberg, M. Prenzela, M. Greinera, S. Heumanna, S. Beckera, R. Schlogla, Catal. Today 295, 32–40 (2017)CrossRefGoogle Scholar
  26. 26.
    N. Cheng, Q. Liu, J. Tian, Y. Xue, A.M. Asiri, H. Jiang, Y. He, X. Sun, Chem. Commun. 51, 1616–1619 (2015)CrossRefGoogle Scholar
  27. 27.
    Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, K. Hashimoto, Nat. Commun. 4, 2390 (2013)CrossRefADSGoogle Scholar
  28. 28.
    K.E. De Krafft, C. Wang, Z. Xie, S. Xin, B.J. Hinds, W. Lin, ACS Appl. Mater. Interfaces. 4, 608–613 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electro Inorganic Chemicals DivisionCSIR, Central Electrochemical Research InstituteKaraikudiIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)New DelhiIndia

Personalised recommendations