Advertisement

Applied Physics A

, 125:394 | Cite as

Effect of doping concentration and annealing temperature on nitrogen-doped ZnO thin films: an investigation through spectroscopic techniques

  • U. Chaitra
  • M. G. Mahesha
  • Dhananjaya KekudaEmail author
  • K. Mohan Rao
Article
  • 10 Downloads

Abstract

Undoped and nitrogen-doped ZnO (NZO) thin films were deposited by sol–gel spin-coating technique on glass substrates. The thin film preparation was accomplished using zinc acetate dihydrate, monoethanolamine and 2-methoxyethanol as the precursors. Ammonium acetate was used as the source of nitrogen for doping. The effect of dopants and the post-heating temperature on the various physical properties of the deposited films was explored. The X-ray diffraction studies reveal the polycrystalline nature of the films which possess a preferred c-axis orientation. Raman characterizations of the films show a clear indication of nitrogen incorporation in the films. The carrier concentration of the thin films was of the order of 1017/cm3 and resistivity as minimum as 0.371 Ω cm was observed for 1 at.% NZO thin films post-heated at 500 °C. The 1 at.% and 2 at.% doped NZO films post-heated at 300 °C and 1 at.%, 2 at.% and 3 at.% doped NZO films with post-heat treatment at 500 °C exhibited p-type conductivity. In the aging study, 500 °C annealed films retained p-type conductivity for 5 days.

Notes

Acknowledgements

The authors thank Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bangalore for providing Raman Characterization facility and Manipal Academy of Higher Education, Manipal, for other characterization facilities.

References

  1. 1.
    L. Xu, X. Li, Y. Chen, F. Xu, Appl. Surf. Sci. 257, 4031 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    E. Senadim, K. Kara, S. Elagoz, D. Kadir, Appl. Surf. Sci. 318, 157 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    M.O.K. Rajan, Characterization of P-type zinc oxide films (University of South Florida, Tampa, 2004)Google Scholar
  4. 4.
    D.G. Thomas, J. Phys. Chem. Solids 9, 31 (1959)ADSCrossRefGoogle Scholar
  5. 5.
    A. Janotti, C.G. Van De Walle, Rep. Prog. Phys. 72, 126501 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    D.C. Look, D. Reynolds, C. Litton, R. Jones, D. Eason, G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    T. Yamamoto, H. Katayama-Yoshida, Jpn. J. Appl. Phys. 38, L166 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    S. Dhara, P. Giri, Thin Solid Films 520, 5000 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    O. Bierwagen, T. Ive, C.G. Van de Walle, J.S. Speck, Appl. Phys. Lett. 93, 242108 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    S. Golshahi, S.M. Rozati, R. Martins, E. Fortunato, Thin Solid Films 518, 1149 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    S.S. Shinde, P.S. Shinde, Y.W. Oh, D. Haranath, C.H. Bhosale, K.Y. Rajpure, J. Anal. Appl. Pyrol. 97, 180 (2015)Google Scholar
  12. 12.
    M.S.A. El-saddek, I.S. Yahia, Z.A. Alahmed, F. Yakuphanoglu, J. Electroceram 30, 152 (2013)CrossRefGoogle Scholar
  13. 13.
    Y.G. Wang, S.P. Lau, X.H. Zhang, H.W. Lee, H.H. Hng, B.K. Tay, J. Cryst. Growth 252, 26 (2003)CrossRefGoogle Scholar
  14. 14.
    C.H. Park, S.H. Wei, Phys. Rev. B 66, 073202 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    T.M. Barnes, K. Olson, C.A. Wolden, Appl. Phys. Lett. 86, 112112 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    L.L. Kerr, X. Li, M. Canepa, A.J. Sommer, Thin Solid Films 515, 5282 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    E. Alves, N. Franco, N. Barradas, F. Munnik, T. Monteiro, M. Peres, J. Wang, R. Martins, E. Fortunato, Vacuum 83, 1274 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    T.K. Pathak, V. Kumar, H.C. Swart, L.P. Purohit, Physica E 77, 1 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    M. Zaharescu, S. Mihaiu, A. Toader, I. Atkinson, J. Calderon-Moreno, M. Anastasescu, M. Nicolescu, M. Duta, M. Gartner, K. Vojisavljevic, B. Malic, V.A. Ivanov, E.P. Zaretskaya, Thin Solid Films 571, 727 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    S. Goto, N. Fujimura, T. Nishihara, T. Ito, J. Cryst. Growth 115, 816 (1991)ADSCrossRefGoogle Scholar
  21. 21.
    U. Chaitra, D. Kekuda, K.M. Rao, Ceram. Int. 43, 7115 (2017)CrossRefGoogle Scholar
  22. 22.
    R. Kumari, A. Sahai, N. Goswami, Prog. Nat. Sci. Mater. Int. 25, 300 (2015)CrossRefGoogle Scholar
  23. 23.
    B.D. Cullity, Elements of X-ray diffraction, 2nd edn. (Addison-Wesley, Boston, 1978)Google Scholar
  24. 24.
    D. Zhang, P. Fan, X. Cai, J. Huang, L. Ru, Z. Zheng, G. Liang, Y. Huang, Appl. Phys. A 2, 437 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    T.K. Pathak, V. Kumar, H.C. Swart, L.P. Purohit, Phys. B Condens. Matter 480, 31 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    A. Campion, P. Kambhampati, Chem. Soc. Rev. 27, 241 (1998)CrossRefGoogle Scholar
  27. 27.
    C. Kranert, R. Schmidt-Grund, M. Grundmann, New J. Phys. 15, 113048 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Z. Xiao, Y. Liu, J. Zhang, D. Zhao, Y. Lu, D. Shen, X. Fan, Semicond. Sci. Technol. 20, 796 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, Appl. Phys. Lett. 80, 1909 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    T. Ohgaki, N. Ohashi, S. Sugimura, H. Ryoken, I. Sakaguchi, Y. Adachi, H. Haneda, J. Mater. Res. 23, 2293 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi (b) 15, 627 (1966)ADSCrossRefGoogle Scholar
  32. 32.
    U. Chaitra, D. Kekuda, K.M. Rao, J. Mater. Sci. Mater. Electron. 27, 7614 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsManipal Institute of Technology, Manipal Academy of Higher EducationManipalIndia

Personalised recommendations