Applied Physics A

, 125:330 | Cite as

The effect of adding CoFe2O4–CdS nanoparticles on the mechanical properties of rice husk ash epoxy composite: an experimental approach

  • Hamid MozafariEmail author
  • Habib Hamidinezhad


In this paper, first, cobalt ferrite and cadmium sulfide nanostructures were synthesized through precipitation method. Thereafter, CoFe2O4 nanocomposite as core–shell structure with magnetic cobalt ferrite core and cadmium sulfide shell was synthesized through chemical method. Afterward, the effect of the synthesized nanocomposites along with rice husk ash microparticles (RHAMPs) on the mechanical properties of epoxy resin (EP) has been investigated. Epoxy resin (Epikote 828) and polyamine hardener have been used to prepare the nanocomposite samples. CoFe2O4–CdS nanocomposites with weight percentages of 0, 0.5, 1, and 2% mixed with 3% of rice husk ash microparticles (RHAMPs) were distributed inside the epoxy resin (EP). The prepared products were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and alternating force gradient magnetometer (AFGM). The mechanical properties of the epoxy nanocomposites/RHAMPs were also determined using uniaxial tensile standard and three-point bending tests. The results associated with the mechanical tests also showed improvement in tensile modulus, bending modulus, and strength of epoxy resin by adding nanoparticles along with rice husk ash to the epoxy matrix.



  1. 1.
    X. Cao, X. Wei, G. Li, C. Hu, K. Dai, J. Guo, G. Zheng, Polymer 112, 1–9 (2017)CrossRefGoogle Scholar
  2. 2.
    A. Giovannelli, D. Di Maio, F. Scarpa, Materials 10, 1222 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    N. Karak, J. Polym. Mater. 23, 1–20 (2006)ADSGoogle Scholar
  4. 4.
    Y. Dong, D. Chaudhary, C. Ploumis, K.T. Lau, Compos. A Appl. Sci. Manuf. 42, 1483–1492 (2011)CrossRefGoogle Scholar
  5. 5.
    M. Le, S. Huang, Materials 8, 5526–5536 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    M.M. Rahman, S. Zainuddin, M.V. Hosur, Compos. Struct. 94, 2397–2406 (2012)CrossRefGoogle Scholar
  7. 7.
    S. Masoumi, G. Nabiyouni, D. Ghanbari, J. Mater. Sci. Mater. Electron 27, 9962 (2016)CrossRefGoogle Scholar
  8. 8.
    K. Hedayati, S. Azarakhsh, J. Saffari, D. Ghanbari, J. Mater. Sci. Mater. Electron 27, 8758 (2016)CrossRefGoogle Scholar
  9. 9.
    G. Nabiyouni, S. Sharifi, D. Ghanbari, M. Salavati-Niasari, J. Nano Struct. 4, 317 (2014)Google Scholar
  10. 10.
    E. Yucel, S. Kahraman, H.S. Guder, J. Mater. Res. Bull. 68, 227 (2015)CrossRefGoogle Scholar
  11. 11.
    P. Punitha, S. Parthiban, S. Senthilkumar, H. Anandalakshmi, S.C. Mojumdar, J. Therm. Anal. Calorim. 119, 871 (2015)CrossRefGoogle Scholar
  12. 12.
    Z. Sun, F. Li, L. Xu, S. Liu, M. Zhao, B. Xu, J. Phys. Chem. 116, 6420 (2012)Google Scholar
  13. 13.
    A. Ravi, A.N. Kumar, S. Ramvir, J. Mater. Focus 3, 267 (2014)CrossRefGoogle Scholar
  14. 14.
    L. Saravanan, R. Jayavel, A. Pandurangan, J.H. Liu, H.Y. Miao, J. Mater. Res. Bull. 52, 128 (2014)CrossRefGoogle Scholar
  15. 15.
    F. Adam, T.S. Chew, J. Andas, Spring Sci. Bus. Media 59, 580–583 (2011)Google Scholar
  16. 16.
    W. Premaratne, W. Priyadarshana, S. Gunawarden, J. Sci. Univ. Kelaniya 8, 33–48 (2013)CrossRefGoogle Scholar
  17. 17.
    M. Yazdimamaghani, T. Pourvala, E. Motamedi, B. Fathi, Materials 6, 3727–3741 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    M. Azadi, M. Ebrahim, F. Heidari, J. Coat. Technol. Res. 8, 117–123 (2011)CrossRefGoogle Scholar
  19. 19.
    P.M. Stefani, V. Cyras, A. Tajeira, A. Vazquez, Appl. Poly. Sci. 99, 2957–2965 (2006)CrossRefGoogle Scholar
  20. 20.
    Y. Hou, W. Hu, L. Liu, Z. Gui, Y. Hu, Comp. Sci. Technol. 157, 185–194 (2018)CrossRefGoogle Scholar
  21. 21.
    Y. Zhoua, F. Pervin, S. Jeelani, P.K. Mallick, J. Mater. Process. Technol. 198, 445–453 (2008)CrossRefGoogle Scholar
  22. 22.
    B. Wang, Y. Duan, Z. Xin, X. Yao, D. Abliz, G. Ziegmann, Comp. Sci. Technol. 158, 51–60 (2018)CrossRefGoogle Scholar
  23. 23.
    P. Chindaprasirt, S. Rukzon, Constr. Build. Mater. 22, 1601–1606 (2006)CrossRefGoogle Scholar
  24. 24.
    V.K. Mathur, Constr. Build. Mater. 20, 470–477 (2006)CrossRefGoogle Scholar
  25. 25.
    P. Chindaprasirt, C. Jaturapitakkul, U. Rattanasak, Fuel 88, 158–162 (2009)CrossRefGoogle Scholar
  26. 26.
    L. Armesto, A. Bahillo, K. Veijonen, A. Cabanillas, J. Otero, Biomass Bioenergy 23, 171–179 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of EngineeringPayame Noor UniversityTehranIran
  2. 2.Department of PhysicsUniversity of MazandaranBabolsarIran

Personalised recommendations