Advertisement

Applied Physics A

, 125:334 | Cite as

Fast and highly selective separation of His-tagged proteins by Ni2+-carrying magnetic core–shell nanoparticles

  • Huiling GuoEmail author
  • Wenjing Wang
  • Fengzhen Zhou
Article
  • 20 Downloads

Abstract

In this study, core–shell Fe3O4@Au nanoparticles with good chemical stability and tunable particle size were synthesized via Au–S bonding, which overcomes the challenges encountered for the reported preparation of Fe3O4@Au. The surface of nanoparticles was investigated by TEM, XRD, XPS, FT-IR, VSM and DLS which characterized the size, morphology, chemical lattice, elemental analysis, functional groups, magnetic strength, and size distribution. The results showed that Fe3O4@Au/NTA-Ni2+ magnetic nanocomposites were spherical with an average diameter of 469.5 nm, and superparamagnetic with saturation magnetization of 7 emu/g. The magnetic nanocomposites were directly utilized for one-step purification of His-tagged proteins from Description Escherichia coli lysate. The as-separated proteins were qualitatively validated by gel analysis and quantitatively measured by UV–visible spectroscopy. The binding capacity of Fe3O4@Au/NTA-Ni2+ towards His-tagged proteins was 48.3 mg/g. The target proteins were separated with high purity and separation efficiency up to 96.6%. Their specificity and enrichment ability were maintained during six cycles of adsorption–elution operations. The advantages of this novel nanoparticle can open a window for the multifunction of nanomaterials and their biological application.

Notes

Acknowledgement

This study was funded by National Natural Science Foundation of China (21401051), Hubei Province Natural Science Fund Project (2014CFB595), and Hubei Province Outstanding youth science and technology innovation team in institutions of higher education (T201705).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    E. Dekking, V.H.J.V.D. Velden, S. Böttcher, M. Brüggemann, E. Sonneveld, A. Koning-Goedheer, N. Boeckx, P. Lucio, L. Sedek, T. Szczepański, T. Kalina, M. Kovac, P. Evans, P.G. Hoogeveen, J. Flores-Montero, A. Orfao, W.M. Comans-Bitter, F.J.T. Staal, J.J.M.V. Dongen, Best Pract. Res. Clin. Haematol. 23, 333–345 (2010)Google Scholar
  2. 2.
    S. Kazuno, T. Fujimura, T. Arai, T. Ueno, K. Nagao, M. Fujime, K. Murayama, Anal. Biochem. 419, 241–249 (2011)CrossRefGoogle Scholar
  3. 3.
    S.M. Williams, P. Schulz, T.L. Rosenberry, R.J. Caselli, M.R. Sierks, J. Alzheimer’s Dis. 58, 1–13 (2017)CrossRefGoogle Scholar
  4. 4.
    Y. Hashida, T. Wada, T. Saito, K. Ohta, Y. Kasahara, A. Yachie, J. Cardiol. 66, 168–174 (2015)CrossRefGoogle Scholar
  5. 5.
    A. Powers, S. Palecek, J. Healthcare Eng. 3, 503–534 (2012)CrossRefGoogle Scholar
  6. 6.
    J.R. Kintzing, M.V. Filsinger Interrante, J.R. Cochran, Trends Pharmacol. Sci. 37, 993 (2016)Google Scholar
  7. 7.
    H.M. Hsu, C.H. Chu, Y.T. Wang, Y. Lee, S.Y. Wei, H.W. Liu, S.J. Ong, C.P. Chen, J.H. Tai, J. Biol. Chem. 289, 19120–19136 (2014)CrossRefGoogle Scholar
  8. 8.
    C.A. Brimacombe, H. Ding, J.T. Beatty, Mol. Microbiol. 92, 1260–1278 (2014)CrossRefGoogle Scholar
  9. 9.
    D.W. Wood, Curr. Opin. Struct. Biol. 26, 54–61 (2014)CrossRefGoogle Scholar
  10. 10.
    L.Y. Zhang, X.J. Zhu, D.J. Jiao, Y.L. Sun, H.W. Sun, Mater. Sci. Eng., C 33, 1989–1992 (2013)CrossRefGoogle Scholar
  11. 11.
    Y.H. Wu, G.X. Chang, Y.B. Zhao, Y. Zhang, J. Nanopart. Res. 16, 1–7 (2014)Google Scholar
  12. 12.
    C. Smith, Nat. Methods 2, 71–77 (2005)CrossRefGoogle Scholar
  13. 13.
    G.Q. Jian, Y.X. Liu, X.W. He, L.X. Chen, Y.K. Zhang, Nanoscale 4, 6336 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Y.T. Zhang, D. Li, M. Yu, W.F. Ma, J. Guo, C.C. Wang, A.C.S. Appl, Mater. Interfaces 6, 8836–8844 (2014)CrossRefGoogle Scholar
  15. 15.
    M. Zhang, X.W. He, L.X. Chen, Y.K. Zhang, Nanotechnology 22, 1–8 (2011)Google Scholar
  16. 16.
    S.Y. Huang, Y.C. Chen, Anal. Chem. 85, 3347–3354 (2013)CrossRefGoogle Scholar
  17. 17.
    M.F. Shao, F.Y. Ning, J.W. Zhao, M. Wei, D.G. Evans, X. Duan, J. Am. Chem. Soc. 134, 1071–1077 (2012)CrossRefGoogle Scholar
  18. 18.
    Z. Liu, M. Li, F. Pu, J.S. Ren, X.J. Yang, X.G. Qu, J. Mater. Chem. 22, 2935–2942 (2012)CrossRefGoogle Scholar
  19. 19.
    J. Chun, S.W. Seo, G.Y. Jung, J. Lee, J. Mater. Chem. 21, 6713–6717 (2011)CrossRefGoogle Scholar
  20. 20.
    Z. Liu, M. Li, X.J. Yang, M.L. Yin, J.S. Ren, X.G. Qu, Biomaterials 32, 4683–4690 (2011)CrossRefGoogle Scholar
  21. 21.
    J. Lee, S.Y. Lee, S.H. Park, H.S. Lee, J.H. Lee, B.Y. Jeong, S.E. Park, J.H. Chang, J. Mater. Chem. B 1, 610–616 (2013)CrossRefGoogle Scholar
  22. 22.
    J.N. Zheng, Z. Lin, W. Liu, L. Wang, S. Zhao, H.H. Yang, L. Zhang, J. Mater. Chem. B 2, 6207–6214 (2014)CrossRefGoogle Scholar
  23. 23.
    Y. Wang, G.C. Wang, Y. Xiao, Y.L. Yang, R.K. Tang, A.C.S. Appl, Mater. Interfaces 6, 19092–19099 (2014)CrossRefGoogle Scholar
  24. 24.
    Y.T. Zhang, Y.K. Yang, W.F. Ma, J. Guo, Y. Lin, C.C. Wang, A.C.S. Appl, Mater. Interfaces 5, 2626–2633 (2013)CrossRefGoogle Scholar
  25. 25.
    Y.H. Wu, G.X. Chang, Y.B. Zhao, Y. Zhang, Dalton Trans. 43, 779–783 (2014)CrossRefGoogle Scholar
  26. 26.
    K. Salimi, D.D. Usta, İ. Koçer, E. Çelik, A. Tuncel, RSC Adv. 7, 8718–8726 (2017)CrossRefGoogle Scholar
  27. 27.
    Y. Zhai, L. Jin, P. Wang, S. Dong, Chem. Commun. 47, 8268–8270 (2011)CrossRefGoogle Scholar
  28. 28.
    I.T.L. Bresolin, M. Borsoi-Ribeiro, W.M.S.C. Tamashiro, E.F.P. Augusto, M.A. Vijayalakshmi, S.M.A. Bueno, Appl. Biochem. Biotechnol. 160, 2148–2165 (2010)CrossRefGoogle Scholar
  29. 29.
    N. Hauptmann, M. Pion, R. Wehner, M.-Á. Muñoz-Fernández, M. Schmitz, B. Voit, D. Appelhans, Biomacromol 15, 957–967 (2014)CrossRefGoogle Scholar
  30. 30.
    H.Y. Xie, R. Zhen, B. Wang, Y.J. Feng, P. Chen, J. Hao, J. Phys. Chem. C 114, 4825–4830 (2010)CrossRefGoogle Scholar
  31. 31.
    I.Y. Goon, L.M.H. Lai, M. Lim, P. Munroe, J.J. Gooding, R. Amal, Chem. Mater. 21, 673–681 (2009)CrossRefGoogle Scholar
  32. 32.
    A. Dutta Chowdhury, N. Agnihotri, R.A. Doong, A. De, Anal. Chem. 89, 12244–12251 (2017)CrossRefGoogle Scholar
  33. 33.
    X. Zhou, W.L. Xu, Y. Wang, Q. Kuang, Y.F. Shi, L.B. Zhong, Q.Q. Zhang, J. Phys. Chem. C 114, 19607–19613 (2010)CrossRefGoogle Scholar
  34. 34.
    J.C. Li, L.F. Zheng, H.D. Cai, W.J. Sun, M.W. Shen, G.X. Zhang, X.Y. Shi, A.C.S. Appl, Mater. Interfaces 5, 10357–10366 (2013)CrossRefGoogle Scholar
  35. 35.
    M.T. Alula, J. Yang, Microchim. Acta 182, 1017–1024 (2015)CrossRefGoogle Scholar
  36. 36.
    G. Absalan, M. Asadi, S. Kamran, L. Sheikhian, D.M. Goltz, J. Hazardous Mater. 192, 476–484 (2011)CrossRefGoogle Scholar
  37. 37.
    Y. Sun, Y. Xia, Analyst 128, 686–691 (2003)ADSCrossRefGoogle Scholar
  38. 38.
    A. Mezni, I. Balti, A. Mlayah, N. Jouini, L.S. Smiri, J. Phys. Chem. C 117, 16166–16174 (2013)CrossRefGoogle Scholar
  39. 39.
    H.N. Qu, L.R. Yang, J.M. Yu, L. Wang, H.Z. Liu, Indus. Eng. Chem. Res. 57, 9448–9456 (2018)CrossRefGoogle Scholar
  40. 40.
    J. Wang, G. Zhao, F. Yu, J. Taiwan Inst. Chem. Eng. 69, 139–145 (2016)CrossRefGoogle Scholar
  41. 41.
    Y. Zhou, D.D. Yan, S.F. Yuan, Y.W. Chen, Emmanuella E. Fletcher, H.F. Shi, B.X. Han, Protein Express. Purif. 144, 5–11 (2018)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Bioengineering and Food, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of industrial Microbiology in Hubei, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Research Center for Food Fermentation Engineering Technology in HubeiHubei University of TechnologyWuhanChina

Personalised recommendations