Advertisement

Applied Physics A

, 125:320 | Cite as

Revealing the doping effect of encapsulated lead halogenides on single-walled carbon nanotubes

  • Marianna V. KharlamovaEmail author
  • Christian Kramberger
  • Paolo Rudatis
  • Thomas Pichler
  • Dominik Eder
Rapid communication
  • 24 Downloads

Abstract

We have investigated the electronic properties of single-walled carbon nanotubes (SWCNTs) filled with lead chloride, lead bromide (PbBr2) and lead iodide (PbI2). The filling of SWCNTs and formation of encapsulated one-dimensional nanocrystals of the salts were directly confirmed by high-resolution scanning transmission electron microscopy. The chemical composition of the encapsulated nanocrystals was proven by X-ray photoelectron spectroscopy (XPS). The electronic properties of the filled SWCNTs were characterized by Raman spectroscopy and XPS. All the three lead halogenides result in p-doping of SWCNTs and, consequently, there is a downshift of the SWCNTs’ Fermi level due to the charge transfer towards the salts. The effect is stronger with metallic than semiconducting nanotubes. The efficiency of doping depends on the type of lead halogenide. The doping effect is the strongest for PbI2 and the weakest for PbBr2.

Notes

Funding

This work was funded by the Deutsche Forschungsgemeinschaft (DFG ED 221/3-1).

References

  1. 1.
    A. Govindaraj, B.C. Satishkumar, M. Nath, C.N.R. Rao, Chem. Mater. 12, 202 (2000)CrossRefGoogle Scholar
  2. 2.
    E. Borowiak-Palen, M.H. Ruemmeli, T. Gemming, T. Pichler, R.J. Kalenczuk, S.R.P. Silva, Nanotechnology 17, 2415 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    E. Borowiak-Palen, E. Mendoza, A. Bachmatiuk, M.H. Rummeli, T. Gemming, J. Nogues, V. Skumryev, R.J. Kalenczuk, T. Pichler, S.R.P. Silva, Chem. Phys. Lett. 421, 129 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    T. Fujimori, A. Morelos-Gomez, Z. Zhu, H. Muramatsu, R. Futamura, K. Urita, M. Terrones, T. Hayashi, M. Endo, S.Y. Hong, Y.C. Choi, D. Tomanek, K. Kaneko, Nat. Commun. 4, 2162 (2013)CrossRefGoogle Scholar
  5. 5.
    A.A. Tonkikh, V.I. Tsebro, E.A. Obraztsova, K. Suenaga, H. Kataura, A.G. Nasibulin, E.I. Kauppinen, E.D. Obraztsova, Carbon 94, 768 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Hart, E.R. White, J. Chen, C.M. McGilvery, C.J. Pickard, A. Michaelides, A. Sella, M.S.P. Shaffer, C.G. Salzmann, Angew. Chem. Int. Ed. 56, 8144 (2017)CrossRefGoogle Scholar
  7. 7.
    J. Sloan, A.I. Kirkland, J.L. Hutchison, M.L.H. Green, C. R. Phys. 4, 1063 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    J. Sloan, S. Friedrichs, R.R. Meyer, A.I. Kirkland, J.L. Hutchison, M.L.H. Green, Inorg. Chim. Acta 330, 1 (2002)CrossRefGoogle Scholar
  9. 9.
    R.R. Meyer, J. Sloan, R.E. Dunin-Borkowski, A.I. Kirkland, M.C. Novotny, S.R. Bailey, J.L. Hutchison, M.L.H. Green, Science 289, 1324 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    E. Philp, J. Sloan, A.I. Kirkland, R.R. Meyer, S. Friedrichs, J.L. Hutchison, M.L.H. Green, Nat. Mater. 2, 788 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    L.V. Yashina, A.A. Eliseev, M.V. Kharlamova, A.A. Volykhov, A.V. Egorov, S.V. Savilov, A.V. Lukashin, R. Puttner, A.I. Belogorokhov, J. Phys. Chem. C 115, 3578 (2011)CrossRefGoogle Scholar
  12. 12.
    Z.Y. Wang, H. Li, Z. Liu, Z.J. Shi, J. Lu, K. Suenaga, S.K. Joung, T. Okazaki, Z.N. Gu, J. Zhou, Z.X. Gao, G.P. Li, S. Sanvito, E.G. Wang, S. Iijima, J. Am. Chem. Soc. 132, 13840 (2010)CrossRefGoogle Scholar
  13. 13.
    R. Carter, J. Sloan, A.I. Kirkland, R.G. Meyer, P.J.D. Lindan, G. Lin, M.L.H. Green, A. Vlandas, J.L. Hutchison, J. Harding, Phys. Rev. Lett. 96, 215501 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    M. Hulman, H. Kuzmany, P.M.F.J. Costa, S. Friedrichs, M.L.H. Green, Appl. Phys. Lett. 85, 2068 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    P.M.F.J. Costa, J. Sloan, T. Rutherford, M.L.H. Green, Chem. Mater. 17, 6579 (2005)CrossRefGoogle Scholar
  16. 16.
    B.W. Smith, M. Monthioux, D.E. Luzzi, Nature 396, 323 (1998)CrossRefGoogle Scholar
  17. 17.
    B. Burteaux, A. Claye, B.W. Smith, M. Monthioux, D.E. Luzzi, J.E. Fischer, Chem. Phys. Lett 310, 21 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    T.W. Chamberlain, A. Camenisch, N.R. Champness, G.A.D. Briggs, S.C. Benjamin, A. Ardavan, A.N. Khlobystov, J. Am. Chem. Soc. 129, 8609 (2007)CrossRefGoogle Scholar
  19. 19.
    M.D. Gimenez-Lopez, A. Chuvilin, U. Kaiser, A.N. Khlobystov, Chem. Commun. 47, 2116 (2011)CrossRefGoogle Scholar
  20. 20.
    H. Shiozawa, T. Pichler, A. Gruneis, R. Pfeiffer, H. Kuzmany, Z. Liu, K. Suenaga, H. Kataura, Adv. Mater. 20, 1443 (2008)CrossRefGoogle Scholar
  21. 21.
    H. Shiozawa, T. Pichler, C. Kramberger, M. Rummeli, D. Batchelor, Z. Liu, K. Suenaga, H. Kataura, S.R.P. Silva, Phys. Rev. Lett. 102, 046804 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    H. Shiozawa, T. Pichler, C. Kramberger, A. Gruneis, M. Knupfer, B. Buchner, V. Zolyomi, J. Koltai, J. Kurti, D. Batchelor, H. Kataura, Phys. Rev. B 77, 153402 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    M.V. Kharlamova, C. Kramberger, T. Saito, Y. Sato, K. Suenaga, T. Pichler, H. Shiozawa, Nanoscale 9, 7998 (2017)CrossRefGoogle Scholar
  24. 24.
    M.V. Kharlamova, C. Kramberger, Y. Sato, T. Saito, K. Suenaga, T. Pichler, H. Shiozawa, Carbon 133, 283 (2018)CrossRefGoogle Scholar
  25. 25.
    H. Shiozawa, C. Kramberger, R. Pfeiffer, H. Kuzmany, T. Pichler, Z. Liu, K. Suenaga, H. Kataura, S.R.P. Silva, Adv. Mater. 22, 3685 (2010)CrossRefGoogle Scholar
  26. 26.
    Y.R. Poudel, W. Li, Mater. Today Phys. 7, 7 (2018)CrossRefGoogle Scholar
  27. 27.
    M.V. Kharlamova, Prog. Mater. Sci. 77, 125 (2016)CrossRefGoogle Scholar
  28. 28.
    P. Corio, A.P. Santos, P.S. Santos, M.L.A. Temperini, V.W. Brar, M.A. Pimenta, M.S. Dresselhaus, Chem. Phys. Lett. 383, 475 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    M.V. Kharlamova, J.J. Niu, Appl. Phys. A 109, 25 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    M.V. Kharlamova, M. Sauer, T. Saito, Y. Sato, K. Suenaga, T. Pichler, H. Shiozawa, Nanoscale 7, 1383 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    M.V. Kharlamova, M. Sauer, T. Saito, S. Krause, X.J. Liu, K. Yanagi, T. Pichler, H. Shiozawa, Phys. Status Solidi B 250, 2575 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    M.V. Kharlamova, L.V. Yashina, A.A. Eliseev, A.A. Volykhov, V.S. Neudachina, M.M. Brzhezinskaya, T.S. Zyubina, A.V. Lukashin, Y.D. Tretyakov, Phys. Status Solidi B 249, 2328 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    M.V. Kharlamova, L.V. Yashina, A.V. Lukashin, J. Mater. Sci. 48, 8412 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    M.V. Kharlamova, Appl. Phys. A 111, 725 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    V.G. Plekhanov, Prog. Mater. Sci. 49, 787 (2004)CrossRefGoogle Scholar
  36. 36.
    S.D. Stranks, H.J. Snaith, Nat. Nanotechnol. 10, 391 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    J. Huang, M. Lai, J. Lin, P. Yang, Adv. Mater. 30, 1802856 (2018)CrossRefGoogle Scholar
  38. 38.
    Q. Zhang, Y. Yin, A.C.S. Cent, Science 4, 668 (2018)Google Scholar
  39. 39.
    Q.A. Akkerman, A.L. Abdelhady, L. Manna, J. Phys. Chem. Lett. 9, 2326 (2018)CrossRefGoogle Scholar
  40. 40.
    J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomen, Handbook of X-ray photoelectron spectroscopy (Perkin-Elmer Corporation, Waltham, 1992)Google Scholar
  41. 41.
    M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G.S. Filho, R. Saito, Carbon 40, 2043 (2002)CrossRefGoogle Scholar
  42. 42.
    P.T. Araujo, I.O. Maciel, P.B.C. Pesce, M.A. Pimenta, S.K. Doorn, H. Qian, A. Hartschuh, M. Steiner, L. Grigorian, K. Hata, A. Jorio, Phys. Rev. B 77, 241403 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Synth. Met. 103, 2555 (1999)CrossRefGoogle Scholar
  44. 44.
    S.D.M. Brown, P. Corio, A. Marucci, M.S. Dresselhaus, M.A. Pimenta, K. Kneipp, Phys. Rev. B 61, R5137 (2000)ADSCrossRefGoogle Scholar
  45. 45.
    A. Jorio, A.G. Souza, G. Dresselhaus, M.S. Dresselhaus, A.K. Swan, M.S. Unlu, B.B. Goldberg, M.A. Pimenta, J.H. Hafner, C.M. Lieber, R. Saito, Phys. Rev. B 65, 155412 (2002)ADSCrossRefGoogle Scholar
  46. 46.
    M. Fouquet, H. Telg, J. Maultzsch, Y. Wu, B. Chandra, J. Hone, T.F. Heinz, C. Thomsen, Phys. Rev. Lett. 102, 075501 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Materials ChemistryVienna University of TechnologyViennaAustria
  2. 2.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations