Advertisement

Applied Physics A

, 125:315 | Cite as

Fabrication of reduced graphene oxide/CeO2 nanocomposite for enhanced electrochemical performance

  • Suresh SagadevanEmail author
  • Mohd. Rafie Johan
  • J. Anita Lett
Article
  • 19 Downloads

Abstract

A facile hydrothermal technique was utilized for the preparation of the CeO2/rGO nanocomposite. X-ray diffraction pattern was used to identify the crystal structure and calculate the crystallite size of the prepared samples. The average crystallite sizes for CeO2 and rGO/CeO2 nanocomposites were calculated to be 14 and 12 nm, respectively. The spectral analysis confirmed the functional groups of CeO2 nanoparticles and CeO2/rGO nanocomposites. The presence of G and D band peaks as well as the CeO2 and CeO2/rGO peaks was confirmed by the FT-Raman analysis. The optical characterization of the synthesized sample was also examined with the help of UV–visible absorption and photoluminescence spectra. The surface morphology of the prepared sample was analyzed by the scanning electron microscope and transmission electron microscopy. The energy-dispersive X-ray spectroscopy analysis confirmed the existence of cerium, oxygen and carbon as the elementary components in the nanocomposite. The electrical properties such as the dielectric constant, the dielectric loss and the AC conductivity were also analyzed. The observed specific capacitances for the CeO2/rGO composite and that of pure CeO2 NPs were calculated as 89 Fg−1 and 77 Fg−1, respectively. Thus, CeO2/rGO nanocomposites can exhibit excellent capacitive performance and thereby serve as a promising anode material for supercapacitor applications.

Notes

Acknowledgements

One of the authors (Suresh Sagadevan) acknowledges the honor of being a “Senior Research Fellow” at Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia. The author wishes to place on record his heartfelt thanks that are due to the authorities concerned.

References

  1. 1.
    H.L. Wang, L.F. Cui, Y. Yang, H.S. Casalongue, J.T. Robinson, Y.Y. Liang, Y. Cui, H.J. Dai, J. Am. Chem. Soc. 132, 13978–13980 (2010)CrossRefGoogle Scholar
  2. 2.
    N.R. Wilson, P.A. Pandey, R. Beanland, R.G. Young, I.A. Kinloch, L. Gong, K. Suenag, J.P. Rourke, J.P. York, J. Sloan, ACS Nano 3, 2547–2556 (2009)CrossRefGoogle Scholar
  3. 3.
    C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Angew. Chem. Int. Ed. 48, 7752–7777 (2009)CrossRefGoogle Scholar
  4. 4.
    S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282–286 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    S. Park, R.S. Ruoff, Nat. Nanotechnol. 4(217–224), 10 (2009)Google Scholar
  6. 6.
    D. Joung, A. Chunder, L. Zhai, S.I. Khondaker, Nanotechnology 21, 165202-1–165202-5 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    A. Chunder, T. Pal, S.I. Khondaker, L. Zhai, J. Phys. Chem. C 114, 15129–15135 (2010)CrossRefGoogle Scholar
  8. 8.
    C. Xu, X. Wang, J. Zhu, J. Phys. Chem. 112, 19841–19845 (2008)Google Scholar
  9. 9.
    R. Pasricha, S. Gupta, A.K. Srivastava, Small 5, 2253–2259 (2009)CrossRefGoogle Scholar
  10. 10.
    G.M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mulhaupt, J. Am. Chem. Soc. 131, 8262–8270 (2009)CrossRefGoogle Scholar
  11. 11.
    Z.-L. Hu, M. Aizawa, Z.-M. Wang, N. Yoshizawa, H. Hatori, Langmuir 26, 6681–6688 (2010)CrossRefGoogle Scholar
  12. 12.
    Y. Lin, K. Zhang, W. Chen, Y. Liu, Z. Geng, J. Zeng, N. Pan, L. Yan, X. Wang, J.G. Hou, ACS Nano 4, 3033–3038 (2010)CrossRefGoogle Scholar
  13. 13.
    A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, Y. Liu, Adv. Mater. 22, 103–106 (2010)CrossRefGoogle Scholar
  14. 14.
    P.V. Kamat, G. Williams, Langmuir 25, 13869–13873 (2009)CrossRefGoogle Scholar
  15. 15.
    I.V. Lightcap, T.H. Kosel, P.V. Kamat, Nano Lett. 10, 577–583 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    G. Williams, B. Seger, P.V. Kamat, ACS Nano 2, 1487–1491 (2008)CrossRefGoogle Scholar
  17. 17.
    H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, ACS Nano 4, 380–386 (2009)CrossRefGoogle Scholar
  18. 18.
    L. Xu, W.Q. Huang, L.L. Wang, G.F. Huang, A.C.S. Appl, Mater. Interfaces 6, 20350 (2014)CrossRefGoogle Scholar
  19. 19.
    M. Srivastava, A.K. Das, P. Khanra, M.E. Uddin, N.H. Kim, J.H. Lee, J. Mater. Chem. C 1, 9792 (2013)CrossRefGoogle Scholar
  20. 20.
    Z.Y. Ji, X.P. Shen, M.Z. Li, H. Zhou, G.X. Zhu, K. Chen, Nanotechnology 24, 115603 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    L.H. Jiang, M.G. Yao, B. Liu, Q.J. Li, R. Liu, H. Lv, S.C. Lu, C. Gong, B. Zou, T. Cui, B.B. Liu, J. Phys. Chem. C 116, 11741 (2012)CrossRefGoogle Scholar
  22. 22.
    M. Srivastava, A.K. Das, P. Khanra, M.E. Uddin, N.H. Kim, J.H. Lee, J. Mater. Chem. A 1, 9792–9801 (2013)CrossRefGoogle Scholar
  23. 23.
    P.K. Gupta, S. Tiwari, Z.H. Khan, P.R. Solanki, J. Mater. Chem. B 5, 2019–2033 (2017)CrossRefGoogle Scholar
  24. 24.
    S. Sagadevan, Z.Z. Chowdhury, M.R.B. Johan, R.F. Rafique, Mater. Res. Express 5, 035014 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    S. Kumar, A.K. Ojha, Mater. Chem. Phys. 171, 126–136 (2016)CrossRefGoogle Scholar
  26. 26.
    E. Swatsitang, S. Phokha, S. Hunpratub, S. Maensiri, Mater. Des. 108, 27–33 (2016)CrossRefGoogle Scholar
  27. 27.
    Y. Wen, H. Ding, Y. Shan, Nanoscale 3, 4411–4417 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    S. Kumar, A.K. Ojha, J. Photochem. Photobiol. B Biol. 159, 111–119 (2016)CrossRefGoogle Scholar
  29. 29.
    S.J. Yang, S. Nam, T. Kim, J.H. Im, H. Jung, J.H. Kang, S. Wi, B. Park, C.R. Park, J. Am. Chem. Soc. 135, 7394–7397 (2013)CrossRefGoogle Scholar
  30. 30.
    S.K. Alla, E.V.P. Komarala, R.K. Mandal, N.K. Prasad, Mater. Chem. Phys. 182, 280–286 (2016)CrossRefGoogle Scholar
  31. 31.
    T. Xu, L. Zhang, H. Cheng, Y. Zhu, Appl. Catal. B Environ. 101, 382–387 (2011)CrossRefGoogle Scholar
  32. 32.
    H. Huang et al., Mater. Chem. A 2, 20118 (2014)CrossRefGoogle Scholar
  33. 33.
    C.W. Sun, H. Li, H.R. Zhang, Z.X. Wang, L.Q. Chen, Nanotechnology 16, 1454–1463 (2005)CrossRefGoogle Scholar
  34. 34.
    J.S. Bradley, B. Tesche, W. Busser, M. Maase, M.T. Reetz, J. Am. Chem. Soc. 122, 4631–4636 (2000)CrossRefGoogle Scholar
  35. 35.
    G. Wang, Q. Mu, T. Chen, Y. Wang, J. Alloys Compd. 493, 202–207 (2010)CrossRefGoogle Scholar
  36. 36.
    Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, Y. Chen, Carbon 45, 821 (2007)CrossRefGoogle Scholar
  37. 37.
    X. Bai, Y. Zhai, Y. Zhang, J. Phys. Chem. C 115, 11673 (2011)CrossRefGoogle Scholar
  38. 38.
    H.J. Yang, W.Q. Cao, D.Q. Zhang, T.J. Su, H.L. Shi, W.Z. Wang, J. Yuan, M.S. Cao, A.C.S. Appl, Mater. Interfaces 7, 7073 (2015)CrossRefGoogle Scholar
  39. 39.
    S. Sagadevan, Z.Z. Chowdhury, M.R.B. Johan, F.A. Aziz, E.M. Salleh, A. Hawa, R.F. Rafique, J. Exp. Nanosci. 13(1), 302–313 (2018)CrossRefGoogle Scholar
  40. 40.
    S. Sagadevan, K. Pal, E. Hoque, Z.Z. Chowdhury, J. Mater. Sci. Mater. Electron. 28, 10902–10908 (2017)CrossRefGoogle Scholar
  41. 41.
    S. Sagadevan, Z.Z. Chowdhury, M.E. Hoque, Mater. Res. Express. 4, 115031 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    S. Sagadevan, K. Pal, Z.Z. Chowdhury, J Alloys Compd. 728, 645–654 (2017)CrossRefGoogle Scholar
  43. 43.
    C.Z. Yuan, X.G. Zhang, L.H. Su, B. Gao, L.F. Shen, J. Mater. Chem. 19, 5772–5777 (2009)CrossRefGoogle Scholar
  44. 44.
    H.W. Wang, Z.A. Hu, Y.Q. Chang, Y.L. Chen, H.Y. Wu, Z.Y. Zhang, Y.Y. Yang, J. Mater. Chem. 21, 10504–10511 (2011)CrossRefGoogle Scholar
  45. 45.
    S. Sagadevan, Z.Z. Chowdhury, M.R.B. Johan, A.A. Khan, F.A. Aziz, R. Rafique, PLoS One 13(10), e0202694 (2018)CrossRefGoogle Scholar
  46. 46.
    H.C. Gao, F. Xiao, C.B. Ching, H.W. Duan, A.C.S. Appl, Mater. Interfaces 4, 2801 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Suresh Sagadevan
    • 1
    Email author
  • Mohd. Rafie Johan
    • 1
  • J. Anita Lett
    • 2
  1. 1.Nanotechnology and Catalysis Research CentreUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of PhysicsSathyabama Institute of Science and TechnologyChennaiIndia

Personalised recommendations