Applied Physics A

, 125:319 | Cite as

Preparation and performance of Fe3O4/TiO2 nanocomposite with enhanced photo-Fenton activity for photocatalysis by facile hydrothermal method

  • V. Maria Vinosel
  • S. Anand
  • M. Asisi Janifer
  • S. PaulineEmail author
  • S. Dhanavel
  • P. Praveena
  • A. Stephen


The photocatalytic degradation of crystal violet organic dye was carried out in presence of various percentages of composite catalyst under UV light irradiation. In this study Fe3O4/TiO2 nanocomposites were synthesized by hydrothermal method, which is simple and cost effective. Using various standard characterization techniques, the physical and chemical properties of the prepared nanocatalyst were determined. The crystallinity and surface morphology were analyzed by X-ray diffraction and scanning electron microscopy. The primary absorption bands were observed using Fourier transform infrared spectroscopy. The optical property which plays a major role in photodegradation was examined using UV–visible spectroscopy. The magnetic behavior of the sample was determined by vibrating sample magnetometer. The optimized and highly efficient Fe3O4/TiO2 (1:4) nanocomposite exhibits enhanced photocatalytic activity in the degradation of crystal violet dye. The efficiency of the catalyst and its photocatalytic mechanism by introducing hydroxyl radical as an oxidizing agent have been explained in detail.



The authors are thankful to SAIF, IIT-Madras, Chennai, for samples characterization.


  1. 1.
    P. Wang, Q. Shi, Y. Shi, K.K. Clark, G.D. Stucky, A.A. Keller, J. Am. Chem. Soc. 131, 182–188 (2008)CrossRefGoogle Scholar
  2. 2.
    I. Ali, Chem. Rev. 112, 5073–5091 (2012)CrossRefGoogle Scholar
  3. 3.
    R.K. Upadhyay, N. Soin, S.S. Roy, RSC Adv. 4, 3823–3851 (2014)CrossRefGoogle Scholar
  4. 4.
    B. Prasad, C. Ghosh, A. Chakraborty, N. Bandyopadhyay, R.K. Ray, Desalination 274, 105–112 (2011)CrossRefGoogle Scholar
  5. 5.
    J. Schneider, M. Matsuoka, M. Takeuchi, Yu. Jinlong Zhang, M.A. Horiuchi, D.W. Bahnemann, Chem. Rev. 114, 9919–9986 (2014)CrossRefGoogle Scholar
  6. 6.
    T. Zhang, X. Yan, D.D. Sun, J. Hazard. Mater. 243, 302–310 (2012)CrossRefGoogle Scholar
  7. 7.
    J.-M. Herrmann, Top. Catal. 34, 49–65 (2005)CrossRefGoogle Scholar
  8. 8.
    J. Blanco-Galvez, P. Fernandez-Ibanez, S. Malato-Rodrıguez, J. Sol. Energy Eng. 129, 4–15 (2007)CrossRefGoogle Scholar
  9. 9.
    Z. Liua, J. Chen, Y. Zhang, W. Liangpeng, X. Li, Mater. Chem. Phys. 128, 1–5 (2011)CrossRefGoogle Scholar
  10. 10.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69–96 (1995)CrossRefGoogle Scholar
  11. 11.
    H. Li, Y. Zhang, S. Wang, W. Qin, C. Liu, J. Hazard. Mater. 169, 1045–1053 (2009)CrossRefGoogle Scholar
  12. 12.
    C.-L. Zhu, M.-L. Zhang, Y.-J. Qiao, G. Xiao, F. Zhang, Y.-J. Chen, J. Phys. Chem. C 114, 16229–16235 (2010)CrossRefGoogle Scholar
  13. 13.
    W. Fu, H. Yang, L. Chang, M. Li, G. Zou, Coll. Surf. A 289, 47–52 (2006)CrossRefGoogle Scholar
  14. 14.
    C.T. Yavuz, J.T. Mayo, W.W. Yu, A. Prakash, J.C. Falkner, S. Yean, L. Cong, H.J. Shipley, A. Kan, M. Tomson, D. Natelson, V.L. Colvin, Science 314, 964–967 (2006)CrossRefGoogle Scholar
  15. 15.
    A. Shabani, G. Nabiyouni, J. Saffari, D. Ghanbari, J. Mater. Sci. 27, 8661 (2016)Google Scholar
  16. 16.
    L. Zheng, X. Hui, F. Pi, Y. Zhang, X. Sun, RSC Adv. 6, 87273–87281 (2016)CrossRefGoogle Scholar
  17. 17.
    Q. Zhang, G. Meng, W. Jianning, D. Li, Z. Liu, Opt. Mater. 46, 52–58 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    L. Fernández, M. Gamallo, M.A. González-Gómez, C. Vázquez-Vázquez, J. Rivas, M. Pintado, M.T. Moreira, J. Environ. Manage. 237, 595–608 (2019)CrossRefGoogle Scholar
  19. 19.
    L. Zhang, W. Wang, J. Yang, Z. Chen, W. Zhang, L. Zhou, S. Liu, Appl. Catal. A 308, 105–110 (2006)CrossRefGoogle Scholar
  20. 20.
    J. Zhan, H. Zhang, G. Zhu, Ceram. Int. 40, 8547–8559 (2014)CrossRefGoogle Scholar
  21. 21.
    T. Xin, M. Ma, H. Zhang, J. Gu, S. Wang, M. Liu, Q. Zhang, Appl. Surf. Sci. 288, 51–59 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    X. Shoufang, L. Hongzhi, L. Chen, X. Wang, RSC Adv. 4, 45266–45274 (2014)CrossRefGoogle Scholar
  23. 23.
    D. Wang, J. Yang, X. Li, J. Wang, H. Zhai, J. Lang, H. Song, Phys. Status Solidi A 214, 1600665 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Q. He, Z. Zhang, J. Xiong, Y. Xiong, H. Xiao, Opt. Mater. 31, 380 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    T.C. Cheng, K.S. Yao, N. Yeh, C.I. Chang, H.C. Hsu, Y.T. Chien, C.Y. Chang, Surf. Coat. Technol. 204, 1141–1144 (2009)CrossRefGoogle Scholar
  26. 26.
    Q. Yuan, N. Li, W. Geng, Y. Chi, X. Li, Mater. Res. Bull. 47, 2396–2402 (2012)CrossRefGoogle Scholar
  27. 27.
    J.S. Choi, H.K. Youn, B.H. Kwak, Q. Wang, K.S. Yang, J.S. Chung, Appl. Catal. B 91, 210–216 (2009)CrossRefGoogle Scholar
  28. 28.
    W. Jiang, X. Zhang, X. Gong, F. Yan, Z. Zhang, Int. J. Smart Nano Mater. 1, 278–287 (2010)CrossRefGoogle Scholar
  29. 29.
    A. Persis Amaliya, S. Anand, S. Pauline, J. Magn. Magn. Mater. 467, 14–28 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    M.M.L. Sonia, S. Anand, S. Blessi, S. Pauline, A. Manikandan, Ceram. Int. 44(18), 22068–22079 (2018)CrossRefGoogle Scholar
  31. 31.
    S. Anand, A. Persis Amaliya, M. Asisi Janifer, S. Pauline, Mod. Electr. Mater. 3, 168–173 (2017)CrossRefGoogle Scholar
  32. 32.
    M.M.L. Sonia, S. Anand, V. Maria Vinosel, M. Asisi Janifer, S. Pauline, J. Magn. Magn. Mater. 466, 238–251 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    M.R. Loghman-Estarki, S. Torkian, R. Rastabi, A. Amini Rastabi, J. Magn. Magn. Mater. 442, 163–175 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    M.M.L. Sonia, S. Anand, V. Maria Vinosel, M. Asisi Janifer, S. Pauline, J. Mater. Sci. 29(17), 15006–15021 (2018)Google Scholar
  35. 35.
    D. Ravelli, D. Dondi, M. Fagnoni, A. Albini, Chem. Soc. Rev. 38, 1999–2011 (2009)CrossRefGoogle Scholar
  36. 36.
    H. Sun, L. Cao, L. Lehui, Nano Res. 4, 550–562 (2011)CrossRefGoogle Scholar
  37. 37.
    C.A. Bignozzi, B.D. Alexander, Photocatalysis (Springer, Berlin, 2011)CrossRefGoogle Scholar
  38. 38.
    K. Tanaka, M.F.V. Capule, T. Hisanag, Chem. Phys. Lett. 187, 73–76 (1991)ADSCrossRefGoogle Scholar
  39. 39.
    T. Kawahara, Y. Konishi, H. Tada, N. Tohge, J. Nishii, S. Ito, Angew. Chem. 114(15), 2935–2937 (2002)CrossRefGoogle Scholar
  40. 40.
    Yu. Jiaguo, Q. Xiang, M. Zhou, Appl. Catal. B 90(3), 595–602 (2009)Google Scholar
  41. 41.
    W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98(51), 13669–13679 (1994)CrossRefGoogle Scholar
  42. 42.
    B. Jiang, C. Tian, Q. Pan, Z. Jiang, J.-Q. Wang, W. Yan, F. Honggang, J. Phys. Chem. C 115, 23718–23725 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsLoyola College (Autonomous)ChennaiIndia
  2. 2.Material Science Centre, Department of Nuclear PhysicsUniversity of MadrasChennaiIndia

Personalised recommendations