Advertisement

Applied Physics A

, 125:318 | Cite as

A high-performance p-type based heterostructure electrically doped NTFET and representation of a neural network model

  • Maryam Abedini
  • Seyed Ali Sedigh ZiabariEmail author
  • Abdollah Eskandarin
Article
  • 29 Downloads

Abstract

This paper presents an electrically doped N-type Tunnel FET(ED-NTFET) using P+ substrate wherein gate electrodes (polarity and control) with the same work function are employed over the gate oxide. Then a positive fixed voltage is applied to polarity gate to accumulate N+ drain. Furthermore, Ge with a narrow band gap is used as the source material and GaAs as the channel and drain materials to realize a heterostructure channel/source interface which improves on state current and ambipolar behavior. To suppress ambipolar current, a metal is implanted in the gate oxide at the drain/channel junction which increases the tunnel barrier width at this junction. Additionally, optimized metal length is extracted based on trading off between the higher on state current and the lower ambipolar current. Significant electrical characteristics of the device demonstrate that it can be an appropriate candidate for analog and digital applications. In the following, an ED NTFET model based on perceptron artificial neural network is presented which can accurately predict the drain current for various physical and electrical parameters such as the gate work function, the oxide thickness, the gate voltage, and the drain voltage. The model can be implemented for more parameters and also used as a device simulator.

Notes

References

  1. 1.
    A. Pal, A.K. Dutta, Analytical drain current modeling of double-gate tunnel field-effect transistors. IEEE Trans. Electron Devices 63(8), 3213–3221 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    A.M. Ionescu, H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373), 329 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    T. Nirschl et al., Scaling properties of the tunneling field effect transistor (TFET): device and circuit. Solid-State Electron. 50(1), 44–51 (2006)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Q. Zhang, W. Zhao, A. Seabaugh, Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett. 27(4), 297–300 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    W.Y. Choi et al., Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Letters 28(8), 743–745 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    A. Vladimirescu, A. Amara, C. Anghel, An analysis on the ambipolar current in Si double-gate tunnel FETs. Solid-State Electron. 70, 67–72 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    K. Nigam, D. Sharma, Approach for ambipolar behaviour suppression in tunnel FET by workfunction engineering. Micro Nano Lett. 11(8), 460–464 (2016)CrossRefGoogle Scholar
  8. 8.
    C.-H. Shih, D.C. Nguyen, Sub-10-nm tunnel field-effect transistor with graded Si/Ge heterojunction. IEEE Electron Device Lett. 32(11), 1498–1500 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    B. Ghosh, W.A. Mohammad, Junctionless tunnel field effect transistor. IEEE Electron Device Lett. 34(5), 584–586 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    P. Bal et al., Performance estimation of sub-30 nm junctionless tunnel FET (JLTFET). J. Comput. Electron. 12(4), 782–789 (2013)CrossRefGoogle Scholar
  11. 11.
    S. Anand, S.I. Amin, R.K. Sarin, Performance analysis of charge plasma based dual electrode tunnel FET. J. Semicond. 37(5), 054003 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    S.B. Rahi, G. Bahniman, High-k double gate junctionless tunnel FET with a tunable bandgap. RSC Adv. 5(67), 54544–54550 (2015)CrossRefGoogle Scholar
  13. 13.
    D.S. Yadav et al., Comparative investigation of novel hetero gate dielectric and drain engineered charge plasma TFET for improved DC and RF performance. Superlattices Microstruct. 111(2017), 123–133 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    D.S. Yadav, R.R. Bhagwan, S. Dheeraj, A novel gate and drain engineered charge plasma tunnel field-effect transistor for low sub-threshold swing and ambipolar nature. Superlattices Microstruct. 100, 266–273 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    P.K. Asthana et al., Optimal design for a high performance H-JLTFET using HfO2 as a gate dielectric for ultra low power applications. RSC Adv. 4(43), 22803–22807 (2014)CrossRefGoogle Scholar
  16. 16.
    B.R. Raad et al., Performance investigation of bandgap, gate material work function and gate dielectric engineered TFET with device reliability improvement. Superlattices Microstruct. 94, 138–146 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    M. Visciarelli et al., Impact of strain on tunneling current and threshold voltage in III–V nanowire TFETs. IEEE Electron Device Lett. 37(5), 560–563 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    R.M.I. Abadi, S.A.S. Ziabari, Representation of strained gate-all-around junctionless tunneling nanowire filed effect transistor for analog applications. Microelectron. Eng. 162, 12–16 (2016)CrossRefGoogle Scholar
  19. 19.
    R.M.I. Abadi, S.A.S. Ziabari, Representation of type I heterostructure junctionless tunnel field effect transistor for high-performance logic application. Appl. Phys. A 122(6), 616 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    P.K. Asthana et al., Improved performance of a junctionless tunnel field effect transistor with a Si and SiGe heterostructure for ultra low power applications. RSC Adv 5(60), 48779–48785 (2015)CrossRefGoogle Scholar
  21. 21.
    S.B. Rahi, G. Bahniman, B. Bhupesh, Temperature effect on hetero structure junctionless tunnel FET. J. Semicond. 36(3), 034002 (2015)CrossRefGoogle Scholar
  22. 22.
    M. Rahimian, M. Fathipour, Improvement of electrical performance in junctionless nanowire TFET using hetero-gate-dielectric. Mater. Sci. Semicond. Process. 63, 142–152 (2017)CrossRefGoogle Scholar
  23. 23.
    S. Anand, R.K. Sarin, Dual material gate doping-less tunnel FET with hetero gate dielectric for enhancement of analog/RF performance. J. Semicond. 38(2), 024001 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    D. Gracia, D. Nirmal, A.N. Justeena, Investigation of Ge based double gate dual metal tunnel FET novel architecture using various hetero dielectric materials. Superlattices Microstruct. 109, 154–160 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    P. Bal et al., Dual material gate junctionless tunnel field effect transistor. J. Comput. Electron. 13(1), 230–234 (2014)CrossRefGoogle Scholar
  26. 26.
    D.S. Yadav et al., Impactful study of dual work function, underlap and hetero gate dielectric on TFET with different drain doping profile for high frequency performance estimation and optimization. Superlattices Microstruct. 96, 36–46 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    H. Aghandeh, S.A.S. Ziabari, Gate engineered heterostructure junctionless TFET with Gaussian doping profile for ambipolar suppression and electrical performance improvement. Superlattices Microstruct. 111, 103–114 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    A. Lahgere, M. Panchore, J. Singh, Dopingless ferroelectric tunnel FET architecture for the improvement of performance of dopingless n-channel tunnel FETs. Superlattices Microstruct. 96, 16–25 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    B. Singh et al., Ferro-electric stacked gate oxide heterojunction electro-statically doped source/drain double-gate tunnel field effect transistors: a superior structure. Mater Sci Semicond Process 71, 161–165 (2017)CrossRefGoogle Scholar
  30. 30.
    D.B. Abdi, M.J. Kumar, Controlling ambipolar current in tunneling FETs using overlapping gate-on-drain. IEEE J Electron Devices Soc. 2(6), 187–190 (2014)CrossRefGoogle Scholar
  31. 31.
    J. Madan, R. Chaujar, Gate drain underlapped-PNIN-GAA-TFET for comprehensively upgraded analog/RF performance. Superlattices Microstruct. 102, 17–26 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    S. Tirkey et al., Analysis of a novel metal implant junctionless tunnel FET for better DC and analog/RF electrostatic parameters. IEEE Trans. Electron Devices 64(9), 3943–3950 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    A. Lahgere, C. Sahu, J. Singh, Electrically doped dynamically configurable field-effect transistor for low-power and high-performance applications. Electron. Lett. 51(16), 1284–1286 (2015)CrossRefGoogle Scholar
  34. 34.
    K. Nigam et al., A new approach for design and investigation of junction-less tunnel FET using electrically doped mechanism. Superlattices Microstruct. 98, 1–7 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    K. Nigam, P. Kondekar, D. Sharma, DC characteristics and analog/RF performance of novel polarity control GaAs-Ge based tunnel field effect transistor. Superlattices Microstruct. 92, 224–231 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    P. Venkatesh et al., Impact of interface trap charges on performance of electrically doped tunnel FET with heterogeneous gate dielectric. IEEE Trans. Device Mater. Reliab. 17(1), 245–252 (2017)MathSciNetCrossRefGoogle Scholar
  37. 37.
    S. Yadav et al., A new structure of electrically doped TFET for improving electronic characteristics. Appl. Phys. A 124(7), 517 (2018)ADSCrossRefGoogle Scholar
  38. 38.
    M. Abedini, A.S.Z. Seyed, E. Abdollah, Representation of heterostructure electrically doped nanoscale tunnel FET with Gaussian-doping profile for high-performance low-power applications. Int. Nano Lett. 8, 1–10 (2018)CrossRefGoogle Scholar
  39. 39.
    X. Liang, Y. Taur, A 2-D analytical solution for SCEs in DG MOSFETs. IEEE Trans. Electron Devices 51(9), 1385–1391 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    G. Baccarani, S. Reggiani, A compact double-gate MOSFET model comprising quantum-mechanical and nonstatic effects. IEEE Trans. Electron Devices 46(8), 1656–1666 (1999)ADSCrossRefGoogle Scholar
  41. 41.
    N.K. Kasabov, Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering (MIT Press, Cambridge, 1996)zbMATHGoogle Scholar
  42. 42.
    F. Djeffal et al., Design and simulation of a nanoelectronic DG MOSFET current source using artificial neural networks. Mater. Sci. Eng., C 27(5-8), 1111–1116 (2007)CrossRefGoogle Scholar
  43. 43.
    V.B. Litovski et al., MOS transistor modelling using neural network. Electron. Lett. 28(18), 1766–1768 (1992)ADSCrossRefGoogle Scholar
  44. 44.
    R.E.Z.A. Yousefi, M.K. Moravvej-Farshi, K. Saghafi, Application of neural space mapping for modeling ballistic carbon nanotube transistors. Iran. J. Electr. Electron. Eng. 6(2), 70–76 (2010)Google Scholar
  45. 45.
    A. Kadri, F. Menacer, F. Djeffal, Simulation and analysis of Graphene-based nanoelectronic circuits using ANN method. Mater. Today: Proc. 5(8), 15959–15967 (2018)Google Scholar
  46. 46.
    J. Xu et al., in Measurement-based non-quasi-static large-signal FET model using artificial neural networks. Microwave Symposium Digest, IEEE MTT-S International (2006)Google Scholar
  47. 47.
    J. Rousset et al., in An accurate neural network model of FET for intermodulation and power analysis. IEEE Microwave Conference, 26th European (1996)Google Scholar
  48. 48.
    S. Tirkey et al., A novel approach to improve the performance of charge plasma tunnel field-effect transistor. IEEE Trans. Electron Devices 65(1), 282–289 (2018)ADSCrossRefGoogle Scholar
  49. 49.
    P.N. Kondekar et al., Design and analysis of polarity controlled electrically doped tunnel FET with bandgap engineering for analog/RF applications. IEEE Trans. Electron Devices 64(2), 412–418 (2017)ADSCrossRefGoogle Scholar
  50. 50.
    Santa Clara, CA. “ATLAS device simulation software (2014)Google Scholar
  51. 51.
    R.J.E. Hueting et al., The charge plasma PN diode. IEEE Electron Device Lett. 29(12), 1367–1368 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    R.P. Ruth, C.M. John, W.C. Dunlap Jr., Vapor-deposited single-crystal germanium. J. Appl. Phys. 31(6), 995–1006 (1960)ADSCrossRefGoogle Scholar
  53. 53.
    J.C. Marinace, Epitaxial vapor growth of Ge single crystals in a closed-cycle process. IBM J. Res. Dev. 4(3), 248–255 (1960)CrossRefGoogle Scholar
  54. 54.
    R.L. Anderson, Experiments on ge-gaas heterojunctions. Solid-State Electron. 5, 341–351 (1962)ADSCrossRefGoogle Scholar
  55. 55.
    C.-A. Chang, Interface morphology of epitaxial growth of Ge on GaAs and GaAs on Ge by molecular beam epitaxy. J. Appl. Phys. 53(2), 1253–1255 (1982)ADSCrossRefGoogle Scholar
  56. 56.
    R.S. Bauer, J.C. Mikkelsen Jr., Surface processes controlling MBE heterojunction formation: GaAs (100)/Ge interfaces. J. Vac. Sci. Technol. 21(2), 491–497 (1982)ADSCrossRefGoogle Scholar
  57. 57.
    J.H. Neave et al., Some observations on Ge: GaAs (001) and GaAs: Ge (001) interfaces and films. J. Vac. Sci. Technol. B: Microelectron. Process Phenom. 1(3), 668–674 (1983)ADSCrossRefGoogle Scholar
  58. 58.
    R.W. Johnson, A. Hultqvist, S.F. Bent, A brief review of atomic layer deposition: from fundamentals to applications. Mater. Today 17(5), 236–246 (2014)CrossRefGoogle Scholar
  59. 59.
    B.R. Raad et al., A new design approach of dopingless tunnel FET for enhancement of device characteristics. IEEE Trans. Electron Devices 64(4), 1830–1836 (2017)ADSCrossRefGoogle Scholar
  60. 60.
    K. Boucart, A.M. Ionescu, Double-gate tunnel FET with high-k gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Maryam Abedini
    • 1
  • Seyed Ali Sedigh Ziabari
    • 1
    Email author
  • Abdollah Eskandarin
    • 1
  1. 1.Islamic Azad University Rasht BranchRashtIslamic Republic of Iran

Personalised recommendations