Advertisement

Applied Physics A

, 125:308 | Cite as

Electrical, photoluminescence and ferromagnetic characterization of pure and doped ZnO nanostructures

  • A. Sedky
  • S. A. Amin
  • Mansour MohamedEmail author
Article
  • 45 Downloads

Abstract

The structural, electrical, optical, and magnetic properties of Zn0.95M0.05O samples (M = Zn, Ni, Cu, Fe, and Mn) are investigated. X-ray diffraction pattern revealed pure hexagonal wurtzite structure for all samples with an (210) additional peak formed only at 2 ~ 43.5° for Ni sample. The average crystalline diameter decreased from 20 nm for ZnO to 11.35 nm by the dopants, while the lattice and U parameters are nearly unchanged. Furthermore, the nonlinear coefficient and breakdown field are increased from 370.37 and 21.91 for ZnO up to 2291.67 and 55.96 by the dopants. The electrical conductivity of the upturn region is also increased by the dopants as compared to ZnO. There are two different values of the energy bandgap for each sample. The first gap is called fundamental gap Egh and its value above 3 eV, while the second gap is called optical gap EgL and its value below 2.6 eV. On the other hand, the UV band edges of photoluminescence intensity are 394, 402, 372, 390, and 404 nm, for Zn, Ni, Cu, Fe, and Mn samples. The Green shift is only recorded for Cu sample at 562 nm corresponding to 2.21 eV energy gap. The exciton energy, loss factor tan δ, and (N/m*) parameter are generally decreased by the dopants and follow the order Ni, Cu, Fe, Mn, and Zn, while lattice dielectric constant and inter-atomic distance are increased and follow the orders Zn, Mn, Fe, Cu, and Ni, and Zn, Ni, Cu, Mn, and Fe, respectively. Magnetization curves revealed clear room temperature ferromagnetism (RTFM) for Mn, Ni, and Fe samples, while they are showed weakly RTFM for Zn and Cu samples. Saturated magnetization Ms, remnant magnetization Mr, magnetization width, magnetic moment, coercivity of the field, and magneto-crystalline anisotropy factor are also affected by the dopants. Our results are discussed in terms of oxygen vacancies, valance state, and recombination of carriers, exhibited by the dopants to ZnO, rather than individual RTFM.

Notes

Acknowledgements

The authors would like to thank Prof. Dr/Mostafa Abdel-Rahiem, Physics Department, Sohag University for co-operation during the present investigation.

References

  1. 1.
    F.K. Shan, Y.S. Yu, J. Eur. Ceram. Soc. 24, 1869 (2004)CrossRefGoogle Scholar
  2. 2.
    T.K. Gupta, J. Am. Cream. Soc. 37(7), 1817 (1990)CrossRefGoogle Scholar
  3. 3.
    N.W. Emanetoglu, C. Gorla, Y. Liu, S. Liang, Y. Lu, Mater. Sci. Semicond. Process. 2, 247 (1999)CrossRefGoogle Scholar
  4. 4.
    Lian Gao, Qiang Li, Weiling Luan, Hirokazu Kawaoka, Tohru Sekino, Koichi Niihara, J. Am. Ceram. Soc. 85(4), 1016 (2002)CrossRefGoogle Scholar
  5. 5.
    D.R. Clarke, J. Am. Ceram. Soc. 82(3), 485 (1999)CrossRefGoogle Scholar
  6. 6.
    Fumiyasu Obe, Yukio Sato, Takahisa Yamamoto, Yuichi Ikuhara, Taketo Sakuma, J. Am. Ceram. Soc. 86(9), 1 (2003)Google Scholar
  7. 7.
    Zhen Zhou, K. Kato, T. Komaki, M. Yoshino, H. Yukawa, M. Morinaga, K. Morita, J. Eur. Ceram. Soc. 24, 139 (2004)CrossRefGoogle Scholar
  8. 8.
    W.H. Pan, S.T. Kuo, W.H. Tuan, H.R. Chen, Int. J. Appl. Ceram. Tech. 7, E80–E88 (2010)CrossRefGoogle Scholar
  9. 9.
    W. Rafizah, W. Abdullah, A. Zakaria, M.S. Ghazali, Int. J. Mol. Sci. 13, 5278 (2012)CrossRefGoogle Scholar
  10. 10.
    A.B. Glot, J. Mater. Sci.: Mater. Electron. 17, 755 (2006)Google Scholar
  11. 11.
    J.P. Joshi, R. Gupta, A.K. Sood, S.V. Bhat, A.R. Raju, C.N.R. Rao, Phys. Rev. B 65, 024410 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    S.S. Dhar, O. Brandt, M. Ramsteiner, V.F. Sapega, K.H. Ploog, Phys. Rev. Lett. 94, 037305 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    J. Hite, G.T. Thaler, R. Khanna, C.R. Abernathy, S.J. Pearton, J.H. Park, A.J. Steckl, J.M. Zavada, Appl. Phys. Lett. 89, 132119 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Y.K. Zhou, S.W. Choi, S. Kimura, S. Emura, S. Hasegawa, H.J. Asahi, Supercond. Nov. Magn. 20, 429 (2007)CrossRefGoogle Scholar
  15. 15.
    A. Gautam, Int. J. Sci. Res. Publ. 2, 1 (2012)Google Scholar
  16. 16.
    R. Kumar, R. Karnani, M. Kumar, Int. J. Res. 1, 1158 (2014)Google Scholar
  17. 17.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    C. Liu, F. Yun, H. Morkoc, A review. J. Mater. Sci.: Mater. Electron. 16, 555 (2005)Google Scholar
  19. 19.
    T. Dietl, H. Ohno, Rev. Mod. Phys. 86, 187 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    S. Kumar, Y.J. Kim, B.H. Koo, S. Gautam, K.H. Chae, R. Kumar, C.G. Lee, Mater. Lett. 63, 194 (2009)CrossRefGoogle Scholar
  21. 21.
    Y. Chang, P. Wang, Q. Sun, Y. Wang, Y. Long, J. Nanomater. 2011, 1 (2011)Google Scholar
  22. 22.
    B.S. Reddy, S.V. Reddy, N.K. Reddy, Y.P. Reddy, Int. J. 3, 49 (2013)Google Scholar
  23. 23.
    B.S. Reddy, S.V. Reddy, N.K. Reddy, Y.P. Reddy, Adv. Mater. Lett. 5, 199 (2014)CrossRefGoogle Scholar
  24. 24.
    Y. K¨oseo˘glu, Ceram. Int. 41, 11655 (2015)CrossRefGoogle Scholar
  25. 25.
    J.H. Shim, T. Hwang, S. Lee, J.H. Park, S.-J. Han, Y.H. Jeong, Appl. Phys. Lett. 86, 082503:1 (2005)Google Scholar
  26. 26.
    J.P. Joshi, R. Gupta, A.K. Sood, S.V. Bhat, A.R. Raju, C.N.R. Rao, Phys. Rev. B 65, 024410 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    X.L. Wang, C.Y. Luan, Q. Shao, A. Pruna, C.W. Leung, R. Lortz, J.A. Zapien, A. Ruotolo, Appl. Phys. Lett. 102, 102112 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    K.R. Kittilstved, N.S. Norberg, D.R. Gamelin, Phys. Rev. Lett. 94, 147209 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    T. Dietl, Semicond. Sci. Technol. 17, 377 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    P.V. Radovanovic, D.R. Gamelin, Phys. Rev. Lett. 91, 157202 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    A. Sedky, KhA Ziq, Superlattice Microstruct. 52, 99 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    S. Ramachandran, J. Narayan, J.T. Prater, Appl. Phys. Lett. 88(24), 242503 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    L.R. Salh, H. Zhu, W.G. Wang, B. Ali, T. Zhu, X. Fan, Y.Q. Song, Q.Y. Wen, H.W. Zhang, S.L. Saleh, Phys. D. Appl. Phys. 43(3), 35002 (2010)CrossRefGoogle Scholar
  34. 34.
    P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, G.A. Gehring, Nat. Mater. 2(10), 673 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    S. Dhar, O. Brandt, M. Ramsteiner, V.F. Sapega, K.H. Ploog, Phys. Rev. Lett. 94(3), 037205-03205 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    K. Potzger, S. Zhou, F. Eichhorn, M. Helm, W. Skorupa, A. Mücklich, J. Fassbender, T. Herrmannsdörfer, A. Bianchi, Appl. Phys. Lett. 99(1–5), 063906 (2006)Google Scholar
  37. 37.
    G. Krishna Reddy, A. Jagannatha Reddy, R. Hari Krishna, B.M. Nagabhushana, Ram Gopal G (2017). J. Asian Ceram. Soc. 5, 350 (2017)CrossRefGoogle Scholar
  38. 38.
    K.S. Shankar, S. Kar, G.N. Subbanna, A.K. Raychaudhuri, Solid. State. Comm. 129, 479 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    A. Dutta, N. Gayathri, R. Ranganathan, Phys. Rev. B 68, 054432 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    G. Venkataiah, D.C. Krishna, M. Vithal, S.S. Rao, S.V. Bhat, V. Prasad, S.V. Subramanyam, P. Venugopal Reddy, Phys. B 357(3–4), 377 (2005)ADSGoogle Scholar
  41. 41.
    M.A. Lopez-Quintela, L.E. Hueso, J. Rivas, F. Rivadulla, Nanotechnology 14, 212 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    H. Ohno, Science 281, 951 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    A. Sedky, M. Abu-Abdeen, A.A. Abdalaziz, Phys. B 388, 266–273 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    Y.M. Kim, M. Yoon, I.W. Park, Y.J. Park, J.H. Lyou, Solid State Commun. 129, 175 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    M.S. Castro, C.M. Aldao, J. Eur. Ceram. Soc. 19, 511 (1998)CrossRefGoogle Scholar
  46. 46.
    G. Pei, C. Xia, S. Cao, J. Zhang, F. Wu, J. Xu, J. Magn. Mater. 302(2), 340 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    C.H. Bates, W.B. White, Science 137, 993 (1962)ADSCrossRefGoogle Scholar
  48. 48.
    Guangqing Pei, Changtai Xia, Shixun Cao, Jungang Zhang, Wu Feng, Xu Jun, JMMM 302(2), 340 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    A. Sedky, Brazilian J physics 44(4), 305 (2014)CrossRefGoogle Scholar
  50. 50.
    E. Kisi, M.M. Elcombe, Acta Crystallogr. Sect. C Cryst. Struct. Commun. C 45, 1867 (1989)CrossRefGoogle Scholar
  51. 51.
    Ü. Özgür, A. Ya, I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, C.V. Avrutin, S.J. Cho, Morkoçd, J. Appl. Phys. 98, 041301 (2005)ADSCrossRefGoogle Scholar
  52. 52.
    A. Sedky, S.B. Mohamed, Mater. Sci. Pol 32(1), 16 (2014)ADSCrossRefGoogle Scholar
  53. 53.
    A. Sedky, Adv. Mater. Sci. Eng. 2(1), 1–6 (2018)Google Scholar
  54. 54.
    F.K. Shan, Z.F. Liu, G.X. Liu, W.J. Lee, G.H. Lee, I.S. Kim, J. Electroceram. 13, 195 (2004)CrossRefGoogle Scholar
  55. 55.
    S.A. Amin, A. Sedky, Mater. Res. Express 6(2019), 065903 (2019).  https://doi.org/10.1088/2053-1591/ab08c6 ADSCrossRefGoogle Scholar
  56. 56.
    X.S. Wang, Z.C. Wu, J.F. Webb, Z.G. Liu, Appl. Phys. A 77, 561 (2003)ADSCrossRefGoogle Scholar
  57. 57.
    X. Li, X. Cao, X. Liang, L. Liu, Y. Wang, C. Meng, Z. Wang, J. Alloys Compd. 675, 90 (2016)CrossRefGoogle Scholar
  58. 58.
    A. Sedky, A. Sawalha, A. Yaseen, Phys. B 404, 3519 (2009)ADSCrossRefGoogle Scholar
  59. 59.
    V.V. Deshpande, M.M. Patil, V. Ravi, Ceram. Int. 32, 85 (2006)CrossRefGoogle Scholar
  60. 60.
    J. Han, P.Q. Mantas, A.M.R. Senos, J. Eur. Ceram. Soc. 22, 49 (2002)CrossRefGoogle Scholar
  61. 61.
    A. Sedky, Int. J. Photonics Opt. Technol. 3(3), 1 (2017)Google Scholar
  62. 62.
    J.W. Fergus, J. Mater. Sci. 38, 4259 (2003)ADSCrossRefGoogle Scholar
  63. 63.
    H.M. Ali, A.M. Abdel Hakeem, Phys. Status Solidi A 207(1), 132 (2010)ADSCrossRefGoogle Scholar
  64. 64.
    H.M. Ali, A.M.A. Hakeem, Eur. Phys. J. Appl. Phys. 72, 10301 (2015)CrossRefGoogle Scholar
  65. 65.
    E.R. Shaaban, M.M. Soraya, M. Shapaan, H. Shokry Hassan, M.M. Samar, J. Alloy. Compd. 693, 1052 (2017)CrossRefGoogle Scholar
  66. 66.
    Q. Shen, T. Toyoda, Jpn. J. Appl. Phys. 39, 3146 (2000)Google Scholar
  67. 67.
    S. Abdalla, K. Easawi, T.A. El-Brolossy, G.M. Yossef, S. Negm, H. Talaat, Rev. Sci. Instrum. 74(1), 8 (2003)CrossRefGoogle Scholar
  68. 68.
    A.A. Othman, M.A. Othman, E.M.M. Ibrahim, M.A. Ali, Ceram. Int. 43, 527 (2017)CrossRefGoogle Scholar
  69. 69.
    H.M. Ali, H.A. Mohamed, S.H. Mohamed, Eur. Phys. J. Appl. Phys. 31, 87 (2005)ADSCrossRefGoogle Scholar
  70. 70.
    M.M. El-Nahass, H.S. Soliman, A. El-Denglawey, Appl. Phys. A 122, 775 (2016)ADSCrossRefGoogle Scholar
  71. 71.
    A. El-Denglawey, J. Lumin. 194, 381 (2018)CrossRefGoogle Scholar
  72. 72.
    S. Mengmeng, Z. Chen, J. Yu, Electrochim. Acta 109, 13 (2013)CrossRefGoogle Scholar
  73. 73.
    YuyuBu and ZhuoyuanChen, J. Power Sour. 272, 647 (2014)CrossRefGoogle Scholar
  74. 74.
    A. El-Denglawey, Non Cryst. Solids 357, 1757 (2011)ADSCrossRefGoogle Scholar
  75. 75.
    A.A. Zaki, A.A. El-Amin, Opt. Laser Technol. 97, 71 (2017)ADSCrossRefGoogle Scholar
  76. 76.
    M.M. El-Desoky, M.A. Ali, G. Afifi, H. Imam, J. Mater. Sci.: Mater. Electron. (2014).  https://doi.org/10.1007/s10854-014-2273-8 CrossRefGoogle Scholar
  77. 77.
    M.M. El-Desoky, J. Non Cryst. Solids 35, 139 (2005)Google Scholar
  78. 78.
    S.H. Wemple, Phys. Rev. B 7, 3767 (1973)ADSCrossRefGoogle Scholar
  79. 79.
    R. Swanepoel, J. Phys. E: Sci. Instrum. 17, 896 (1984)ADSCrossRefGoogle Scholar
  80. 80.
    Y. Li, L. Xu, L.X. Shena, A. Wang, Appl. Surf. Sci. 256, 45439 (2010)Google Scholar
  81. 81.
    M. Dongol, M.M. El-Nahass, M. Abou-Zied, A. El-Denglawey, Eur. Phys. J. Appl. Phys. 37, 257 (2007)ADSCrossRefGoogle Scholar
  82. 82.
    M. Dongol, M.M. El-Nahass, M. Abou-Zied, A. El-Denglawey, Phys. B 371, 218 (2006)ADSCrossRefGoogle Scholar
  83. 83.
    Y.S. Wang, P. John Thomas, P. O’Brien, J. Phys. Chem. B 110(43), 21412 (2006)CrossRefGoogle Scholar
  84. 84.
    M. Deepa, N. Bahadur, A.K. Srivastava, P. Chaganti, K.N. Sood, J. Phys. & Chem. Of Solids 70, 291 (2009)ADSCrossRefGoogle Scholar
  85. 85.
    H. Bahadur, S.B. Samanta, A.K. Srivastava, K.N. Sood, R. Kishore, R.K. Sharma, A. Basu, M. Kar, P. Pal, V. Bhatt, S. Chandra, J. Mater. Sci. 41, 7562 (2006)ADSCrossRefGoogle Scholar
  86. 86.
    F. Schrettle, Ch. Kant, P. Lunkenheimer, F. Mayr, J. Deisenhofer, A. Loidl, Wüstite Eur. Phys. J. B. Condens Matter Complex Syst 85, 1 (2012)CrossRefGoogle Scholar
  87. 87.
    L. Jihui, H. Qiang, L. Changsheng, Y. Jinghai, L. Xue, Y. Lili, W. Dandan, Z. Hongju, G. Ming, Z. Yongjun, L. Xiaoyan, W. Maobin, Appl. Surf. Sci. 256(11), 3365 (2010)CrossRefGoogle Scholar
  88. 88.
    J. Kaur, R.K. Kotnala, V. Gupta, K.C. Verma, Curr. Appl. Phys. 14(5), 637 (2014)CrossRefGoogle Scholar
  89. 89.
    M. Diaconu, H. Schmidt, H. Hochmuthand, M. Lorenz, JMMM 307, 212 (2006)ADSCrossRefGoogle Scholar
  90. 90.
    D. Sanyal, M. Chakrabarti, T.K. Roy, A. Chakrabarti, Phys. Lett. A 371, 482 (2007)ADSCrossRefGoogle Scholar
  91. 91.
    Boris B. Straumal, Svetlana G. Protasova, Andrei A. Mazilkin, Thomas Tietze, Eberhard Goering, Gisela Schütz, Petr B. Straumal, Brigitte Baretzky, Beil. J. Nanotechnol. 4, 361 (2013)CrossRefGoogle Scholar
  92. 92.
    B.B. Straumal, A.A. Mazilkin, S.G. Portasova, A.A. Myatiev, P.B. Straumal, G. Schuitz, P.A. Van Aken, Eberhard Goering, B. Baretzky, Phys. Rev. B 79, 205206 (2009)ADSCrossRefGoogle Scholar
  93. 93.
    S.A. Ahmed, Results Phys. 7, 604 (2017)ADSCrossRefGoogle Scholar
  94. 94.
    A.A.H. El-Bassuony, J. Mater. Sci.: Mater. Electron. (2017).  https://doi.org/10.1007/s10854-017-8261-z CrossRefGoogle Scholar
  95. 95.
    E.E. Ateia, A.A.H. El-Bassuony, G. Abdelatief, F.S. Soliman, J. Mater. Sci. Mater. in Electron 28, 241 (2017)CrossRefGoogle Scholar
  96. 96.
    E.E. Ateia, L.M. Salah, A.A.H. El-Bassuony, Inorg. Organomet. Polym. Mater. 25, 1362 (2015)CrossRefGoogle Scholar
  97. 97.
    A.A.H. El-Bassuony, H.K. Abdelsalam, J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4340-x CrossRefGoogle Scholar
  98. 98.
    Y.L. Tsal, C.L. Huang, C.C. Wei, J. Mater. Sci. Let. 4, 1305 (1985)CrossRefGoogle Scholar
  99. 99.
    S. Ayman, A. Sedky, M. Abu-Abdeen, Phys. B 404, 1316 (2009)ADSCrossRefGoogle Scholar
  100. 100.
    N. Ohashi et al., Jpn. J. Appl. Phys. 38, 5028 (1999)ADSCrossRefGoogle Scholar
  101. 101.
    F. Oba, I. Tanaka, H. Adachi, Jpn. J. Appl. Phys. 38, 3569 (1999)ADSCrossRefGoogle Scholar
  102. 102.
    P.Q. Mantas, J.L. Baptista, J. Eur. Ceram. Soc. 15, 605 (1995)CrossRefGoogle Scholar
  103. 103.
    J. Han, P.Q. Mantas, A.M.R. Senos, J. Eur. Ceram. Soc. 21, 1883 (2001)CrossRefGoogle Scholar
  104. 104.
    W.G. Carlson, T.K. Gupta, J. Appl. Phys. 53, 5746 (1982)ADSCrossRefGoogle Scholar
  105. 105.
    A. Sedky, E. El-Suheel, Phys. Res. Int. 1, 1 (2010)CrossRefGoogle Scholar
  106. 106.
    D. Vogel, P. Krüger, J. Pollmann, Phys. Rev. B 52, R14316 (1995)ADSCrossRefGoogle Scholar
  107. 107.
    O. Zakharov, A. Rubio, X. Blasé, M.L. Cohen, S.G. Louie, Phys. Rev. B 50, 10780 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceAssiut UniversityAssiutEgypt

Personalised recommendations