Advertisement

Applied Physics A

, 125:301 | Cite as

Large electrostrictive properties in lead-free BaTiO3–ZnSnO3 solid solutions

  • Yinyin ZhuEmail author
Article
  • 54 Downloads

Abstract

A new lead-free perovskite piezoelectric solid solution (1−x)BaTiO3xZnSnO3 (BT–xZS) was designed and fabricated using the traditional solid-state reaction method. The introduction of ZnSnO3 was found to shift the high-temperature cubic phase of BaTiO3 to lower temperatures. At room temperature large electrostrictive coefficient up to 0.0452 m4 C−2 was obtained in BT–0.10ZS ceramic, which is much larger than the traditional electrostrictive material Pb(Mg1/3Nb2/3)O3 and recently reported lead-free electrostrictive systems. The large electrostrictive response of BT–xZS ceramics makes them quite potential to be applied to new solid-state actuators.

Notes

Acknowledgements

Thanks very much for the continuous support from Prof. Dazhi Sun in the Department of Chemistry, Shanghai Normal University.

References

  1. 1.
    W. Jo, R. Dittmer, M. Acosta, J.D. Zang, C. Groh, E. Sapper, K. Wang, J. Rödel, J. Electroceram. 29, 71 (2012)CrossRefGoogle Scholar
  2. 2.
    J. Rödel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009)CrossRefGoogle Scholar
  3. 3.
    F.F. Wang, M. Xu, Y.X. Tang, T. Wang, W.Z. Shi, C.M. Leung, J. Am. Ceram. Soc. 95, 1955 (2012)CrossRefGoogle Scholar
  4. 4.
    F.F. Wang, C.M. Leung, Y.X. Tang, T. Wang, W.Z. Shi, J. Appl. Phys. 114, 164105 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Q.R. Yao, F.F. Wang, F. Xu, C.M. Leung, T. Wang, Y.X. Tang, X. Ye, Y.Q. Xie, D.Z. Sun, W.Z. Shi, A.C.S. Appl, Mater. Interfaces 7, 5066 (2015)CrossRefGoogle Scholar
  6. 6.
    X.M. Liu, X.L. Tan, Adv. Mater. 28, 574 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    C. Groh, D.J. Franzbach, W. Jo, K.G. Webber, J. Kling, L.A. Schmitt, H.J. Kleebe, S.J. Jeong, J.S. Lee, J. Rödel, Adv. Funct. Mater. 24, 356 (2014)CrossRefGoogle Scholar
  8. 8.
    R.Z. Zuo, H. Qi, J. Fu, J.F. Li, M. Shi, Y.D. Xu, Appl. Phys. Lett. 108, 232904 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    C. Ang, Z. Yu, Adv. Mater. 18, 103 (2006)CrossRefGoogle Scholar
  10. 10.
    S.T. Zhang, A.B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rödel, D. Damjanovic, Adv. Mater. 21, 4716 (2009)CrossRefGoogle Scholar
  11. 11.
    D. Duraisamy, G.N. Venkatesan, Appl. Phys. Lett. 112, 052903 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    F. Li, L. Jin, R.P. Guo, Appl. Phys. Lett. 105, 232903 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    M. Nakayama, M. Nogami, M. Yoshida, T. Katsumata, Y. Inaguma, Adv. Mater. 22, 2579 (2010)CrossRefGoogle Scholar
  14. 14.
    Y. Inaguma, M. Yoshida, T. Katsumata, J. Am. Chem. Soc. 130, 6704 (2008)CrossRefGoogle Scholar
  15. 15.
    J.M. Li, F.F. Wang, X.M. Qin, M. Xu, W.Z. Shi, Appl. Phys. A 104, 117 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    A. Furuta, K. Uchino, J. Am. Ceram. Soc. 76, 1615 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shanghai Normal UniversityShanghaiChina

Personalised recommendations