Advertisement

Applied Physics A

, 125:317 | Cite as

High-performance dendritic metamaterial absorber for broadband and near-meter wave radar

  • Jiaoyan Song
  • Jing ZhaoEmail author
  • Yimin Li
  • Bo Li
  • Xiaopeng ZhaoEmail author
Article
  • 41 Downloads

Abstract

Absorbing materials in ultra-high-frequency (UHF) band has constantly been a major challenge. The size of the absorber in UHF band is large, whereas the resonant frequency band is narrow. According to Rozanov’s theory, two kinds of composite metamaterial absorbers are designed to realize the requirements of low-frequency broadband metamaterial microwave absorber: the magnetic-metamaterial composite absorber1 and the dielectric-metamaterial composite absorber 2. In the range of approximately 300–1000 MHz, both absorbers achieve absorption of over 90% and feature good adaptability to the incident angle of the incident wave. The absorbers also present good absorption rate of over 80% in the range of 0°–45°. An absorber MA3 is designed with absorption frequency range of 1.08–4.03 GHz, and the experimental results are in good agreement with the simulation results. Processing samples of indium tin oxide resistance film and polymethacrylimide foam board features simple preparation and low cost, and the most important thing is to consider the weight problem, which features certain advantages in terms of use.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11674267) and the National Key Scientific Program of China (under Project No. 2012CB921503).

References

  1. 1.
    R. Abhari, G.V. Eleftheriades, Metallo-dielectric electromagnetic bandgap structures for suppression and isolation of the parallel-plate noise in high-speed circuits. IEEE Trans. Microw. Theory Tech. 51(6), 1629–1639 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    K. Ito, N. Haga, M. Takahashi et al., Evaluations of body-centric wireless communication channels in a range from 3 MHz to 3 GHz. Proc. IEEE 100(7), 2356–2363 (2012)CrossRefGoogle Scholar
  3. 3.
    Y. Okano, S. Ogino, K. Ishikawa, Development of optically transparent ultrathin microwave absorber for ultrahigh-frequency RF identification system. IEEE Trans. Microw. Theory Tech. 60(8), 2456–2464 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    N.Z. Chen, X. Qing, L.H. Chung, A universal UHF RFID reader antenna. IEEE Trans. Microw. Theory Tech. 57(5), 1275–1282 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Kawano, S. Hayashida, S. Bae et al., A study on miniaturization of 900 MHz and 2 GHz band antennas utilizing magnetic material, in Antennas and Propagation Society International Symposium IEEE, vol. 3B (2005), pp. 347–350Google Scholar
  6. 6.
    S. Gu, J.P. Barrett, T.H. Hand et al., A broadband low-reflection metamaterial absorber. J. Appl. Phys. 108(6), 064913 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100(4), 207402 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 4 (2000)CrossRefGoogle Scholar
  9. 9.
    B.Q. Liu, X.P. Zhao, W.R. Zhu, W. Luo, X.C. Cheng, Multiple pass-band optical left-handed metamaterials based on random dendritic cells. Adv. Funct. Mater. 18(21), 3523–3528 (2008)CrossRefGoogle Scholar
  10. 10.
    L. Li, Z. Lv, Ultra-wideband polarization-insensitive and wide-angle thin absorber based on resistive metasurfaces with three resonant modes. J. Appl. Phys. 122(5), 055104 (2017)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    F. Ding, Y. Cui, X. Ge et al., Ultra-broadband microwave metamaterial absorber. Appl. Phys. Lett. 100(10), 103506-103506-4 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    C.R. Luo, L. Kang, Q. Zhao, Effect of nonuniform-defect split ring resonators, on the left-handed metamater ials. Acta Phys. Sin. 54(4), 1607–1612 (2005)Google Scholar
  13. 13.
    S. Bao, C.R. Luo, Y.P. Zhang, X.P. Zhao, Broadband metamaterial absorber based on dendritic structure. Acta Phys. Sin. 59, 5 (2010)Google Scholar
  14. 14.
    S. Gu, B. Su, X.P. Zhao, Planar isotropic broadband metamaterial absorber. J. Appl. Phys. 114(16), 163702 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    B. Wang, B.Y. Gong, M. Wang, B. Weng, X.P. Zhao, Dendritic wideband metamaterial absorber based on resistance film. Appl. Phys. A 145(5), 1559–1563 (2014)Google Scholar
  16. 16.
    W.R. Zhu, X.P. Zhao, B.Y. Gong, L.H. Liu, B. Su, Optical metamaterial absorber based on leaf-shaped cells. Appl. Phys. A 102(147), 147–151 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    B.X. Khuyen, B.S. Tung, Y.J. Yoo et al., Miniaturization for ultrathin metamaterial perfect absorber in the VHF band. Sci. Rep. 7, 45151 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    B.Y. Gong, F. Guo, W.K. Zou et al., New design of multi-band negative-index metamaterial and absorber at visible frequencies. Mod. Phys. Lett. B 31(11), 1750286 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    J. Zhao, T. Peng, C.-C. Chen, J.L. Volakis, Low-profile ultra-wideband inverted-hat monopole antenna for 50 MHz–2 GHz operation. Electron. Lett. 45(3), 142–144 (2009)CrossRefGoogle Scholar
  20. 20.
    J. Zhao, C.-C. Chen, J.L. Volakis, Frequency-scaled UWB inverted-hat antenna. IEEE Trans. Antennas Propag. 58(7), 2447–2451 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    J. Zhao, D. Psychoudakis, C.-C. Chen, J.L. Volakis, Design optimization of a low-profile UWB body-of-revolution monopole antenna. IEEE Trans. Antennas Propag. 60(12), 5578–5586 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    J. Mou, Z. Shen, Broadband and thin magnetic absorber with non-Foster metasurface for admittance matching. Sci. Rep. 7(1), 6922 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    K.N. Rozanov, Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans. Antennas Propag. 48(8), 1230–1234 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    W.W. Salisbury, U.S. Patent No. 2,599,944. Washington, DC: U.S. Patent and Trademark Office (1952)Google Scholar
  25. 25.
    Y.J. Yoo, H.Y. Zheng, Y.J. Kim et al., Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell. Appl. Phys. Lett. 105(4), 041902-041902-4 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    W. Zuo, Y. Yang, X. He et al., A miniaturized metamaterial absorber for ultrahigh-frequency RFID system. IEEE Antennas Wireless Propag. Lett. 16, 329–332 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    M. Wang, B. Weng, J. Zhao et al., Dendritic-metasurface-based flexible broadband microwave absorbers. Appl. Phys. A 123(6), 434 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Y.H. Liu, X.P. Zhao, Perfect absorber metamaterial for designing low-RCS patch antenna. IEEE Antennas Wirel. Propag. Lett. 13, 1473–1476 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    X. Zhou, X.P. Zhao, Resonant condition of unitary dendritic structure with overlapping negative permittivity and permeability. Appl. Phys. Lett. 91(18), 181908-181908-3 (2007)ADSGoogle Scholar
  30. 30.
    W.R. Zhu, X.P. Zhao, Metamaterial absorber with dendritic cells at infrared frequencies. J. Opt. Soc. Am. B 26(26), 2382–2385 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    Y.H. Liu, S.L. Fang et al., Multiband and broadband metamterial absorbers. Acta Phys. Sin. 62(13), 134102 (2013)Google Scholar
  32. 32.
    T. Koschny, E.N. Economou, C.M. Soukoulis et al., Effective medium theory of left-handed materials. Phys. Rev. Lett. 93(10), 107402 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    Smith, D.C. Vier, T. Koschny et al., Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E Stat. Nonlinear Soft Matter. Phys. 71(3), 36617 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    Q. Chen, S. Bie, W. Yuan et al., Low frequency absorption properties of a thin metamaterial absorber with cross-array on the surface of a magnetic substrate. J. Phys. D Appl. Phys. 49(42), 425102 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    B.H. Zhang, W.L. Deng, H.P. Zhou et al., Low frequency needlepoint-shape metamaterial absorber based on magnetic medium. J. Appl. Phys. 113(1), 013903 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Smart Materials Laboratory, Department of Applied PhysicsNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.Medtronic plcBoulderUSA

Personalised recommendations