Advertisement

Applied Physics A

, 125:299 | Cite as

\({\mathrm{{Cu}}_2\mathrm{{ZnSnS}}_4}\) thin films prepared with a Joule-heated graphite closed-space sulfurization system

  • R. A. Colina-Ruiz
  • J. A. Hoy-Benitez
  • J. Mustre de León
  • F. Caballero-Briones
  • F. J. Espinosa-FallerEmail author
Article
  • 47 Downloads

Abstract

Non-stoichiometric \({\mathrm{{Cu}}_2\mathrm{{ZnSnS}}_4}\) (CZTS) thin films were prepared using a closed-space sulfurization process of vacuum-evaporated stacks of ZnS, Cu and Sn in a custom-designed Joule-heated graphite reactor. In the first sulfurization step, at 250 °C, Cu and Sn transform into CuS and SnS. In a second sulfurization step, at 510 °C, the stack finally transforms into CZTS. Sample compositions were determined by energy-dispersive X-ray spectroscopy. Three different Cu-poor/Zn-rich samples and one slightly Cu-rich/Zn-poor sample were obtained, with Cu/(Zn\(\,+\,\)Sn) ratios of 0.64, 0.85, 0.91 and 1.02. The effect of the closed-space sulfurization process in the morphology was analyzed by scanning electron microscopy, allowing to obtain estimates of grain sizes in the range from 0.50 to 0.75 \(\upmu \mathrm{{m}}\). X-ray diffraction confirmed the polycrystalline structure of the kesterite CZTS thin films with crystallite sizes that vary from 48 to 64 nm as the Cu content increases in the samples. An estimate of lattice microstrain indicates larger values for samples with larger grains and higher Cu/(Zn\(\,+\,\)Sn) ratios. Raman spectroscopy reveals the characteristic kesterite structure with the main peak shifted to a lower wave number, a signature associated with partially disordered kesterite. Optical characterization shows a decreasing bandgap from 1.47 to 1.39 eV and an increasing Urbach energy from 77 to 200 meV as the relation Cu/(Zn\(\,+\,\)Sn) increases, indicating a decrease in the localized states in the bandgap for Cu-poor samples. Results indicate that CZTS thin films obtained from the custom-made Joule-heated graphite reactor have similar characteristics to the films obtained from more conventional methods like sulfurization in a tubular furnace with the advantage of a precise and fast-response temperature control that could allow novel sulfurization strategies.

Notes

Acknowledgements

This work was supported by CONACYT, Mexico, through Grant # 169108 and SIP-IPN under project # 20181187. For SEM and XRD measurements, we thank LANNBIO-CINVESTAV México through Grant FOMIX-YUCATAN 2008-108160 and CONACYT LAB-2009-01 # 123913. Raman and optical reflectance measurements were performed through Grant support CONACYT # 204822. Finally, the authors wish to thank MSc. Dora Huerta-Quintanilla, MSc. Daniel Aguilar-Treviño, MSc. Jose Bante-Guerra and Eng. Willian Cauich-Ruiz for all technical support.

Supplementary material

339_2019_2598_MOESM1_ESM.docx (2.4 mb)
Supplementary file1 (DOCX 2435 kb)

References

  1. 1.
    C. Persson, J. Appl. Phys. 107, 5 (2010).  https://doi.org/10.1063/1.3318468 CrossRefGoogle Scholar
  2. 2.
    K. Ito, T. Nakazawa, Jpn. J. Appl. Phys. 27, 2094 (1988).  https://doi.org/10.1143/JJAP.27.2094 ADSCrossRefGoogle Scholar
  3. 3.
    H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Sol. Energy Mater. Sol. Cells 49, 407 (1997).  https://doi.org/10.1016/S0927-0248(97)00119-0 CrossRefGoogle Scholar
  4. 4.
    J. Seol, S. Lee, J. Lee, H. Nam, K. Kim, Sol. Energy Mater. Sol. Cells 75, 155 (2003).  https://doi.org/10.1016/S0927-0248(02)00127-7 CrossRefGoogle Scholar
  5. 5.
    H. Katagiri, Thin Solid Films 480–481, 426 (2005).  https://doi.org/10.1016/j.tsf.2004.11.024 ADSCrossRefGoogle Scholar
  6. 6.
    H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, T. Motohiro, Appl. Phys. Express 1(4), 0412011 (2008).  https://doi.org/10.1143/APEX.1.041201 CrossRefGoogle Scholar
  7. 7.
    D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, Solar Energy Mater. Solar Cells 95(6), 1421 (2011).  https://doi.org/10.1016/j.solmat.2010.11.028 CrossRefGoogle Scholar
  8. 8.
    B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Prog. Photovolt. 21(1), 72 (2013).  https://doi.org/10.1002/pip.1174 CrossRefGoogle Scholar
  9. 9.
    M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W. Ho-Baillie, Prog. Photovolt. 26(7), 427 (2018).  https://doi.org/10.1002/pip.3040 CrossRefGoogle Scholar
  10. 10.
    K. Sun, C. Yan, F. Liu, J. Huang, F. Zhou, J.A. Stride, M. Green, X. Hao, Adv. Energy Mater. 6, 1 (2016).  https://doi.org/10.1002/aenm.201600046 ADSCrossRefGoogle Scholar
  11. 11.
    S. Chen, X.G. Gong, A. Walsh, S.H. Wei, Appl. Phys. Lett. 94(4), 25 (2009).  https://doi.org/10.1063/1.3074499 CrossRefGoogle Scholar
  12. 12.
    L. Choubrac, A. Lafond, C. Guillot-Deudon, Y. Moëlo, S. Jobic, Inorg. Chem. 51(6), 3346 (2012).  https://doi.org/10.1021/ic202569q CrossRefGoogle Scholar
  13. 13.
    C.J. Bosson, M.T. Birch, D.P. Halliday, C.C. Tang, A.K. Kleppe, P.D. Hatton, Chem. Mater. (2017).  https://doi.org/10.1021/acs.chemmater.7b04010. (p. acs.chemmater.7b04010) CrossRefGoogle Scholar
  14. 14.
    A. Lafond, L. Choubrac, C. Guillot-Deudon, P. Fertey, M. Evain, S. Jobic, Acta crystallographica section B: structural science. Cryst. Eng. Mater. 70(2), 390 (2014).  https://doi.org/10.1107/S2052520614003138 CrossRefGoogle Scholar
  15. 15.
    S. Schorr, H.J. Hoebler, M. Tovar, Eur. J. Mineral. 19, 65 (2007).  https://doi.org/10.1127/0935-1221/2007/0019-0065 ADSCrossRefGoogle Scholar
  16. 16.
    A. Lafond, L. Choubrac, C. Guillot-Deudon, P. Deniard, S. Jobic, Z. Anorg. Allg. Chem. 638(15), 2571 (2012).  https://doi.org/10.1002/zaac.201200279 CrossRefGoogle Scholar
  17. 17.
    L. Choubrac, M. Paris, A. Lafond, C. Guillot-Deudon, X. Rocquefelte, S. Jobic, Phys. Chem. Chem. Phys. 15(26), 10722 (2013).  https://doi.org/10.1039/c3cp51320c CrossRefGoogle Scholar
  18. 18.
    M. Paris, L. Choubrac, A. Lafond, C. Guillot-Deudon, S. Jobic, Inorg. Chem. 53(16), 8646 (2014).  https://doi.org/10.1021/ic5012346 CrossRefGoogle Scholar
  19. 19.
    M.Y. Valakh, V.M. Dzhagan, I.S. Babichuk, X. Fontane, A. Perez-Rodriquez, S. Schorr, JETP Lett. 98(5), 255 (2013).  https://doi.org/10.1134/S0021364013180136 ADSCrossRefGoogle Scholar
  20. 20.
    R. Caballero, E. Garcia-Llamas, J.M. Merino, M. León, I. Babichuk, V. Dzhagan, V. Strelchuk, M. Valakh, Acta Mater. 65, 412 (2014).  https://doi.org/10.1016/j.actamat.2013.11.010 CrossRefGoogle Scholar
  21. 21.
    J.J.S. Scragg, L. Choubrac, A. Lafond, T. Ericson, C. Platzer-Björkman, Appl. Phys. Lett. 104(4), 1 (2014).  https://doi.org/10.1063/1.4863685 CrossRefGoogle Scholar
  22. 22.
    K. Rudisch, A. Davydova, C. Platzer-Björkman, J. Scragg, J. Appl. Phys. (2018).  https://doi.org/10.1063/1.5010081 CrossRefGoogle Scholar
  23. 23.
    R.A. Colina-Ruiz, J. Mustre de León, J.S. Lezama-Pacheco, F. Caballero-Briones, M. Acosta-Alejandro, F.J. Espinosa-Faller, J. Alloys Compd. (2017).  https://doi.org/10.1016/j.jallcom.2017.04.191 CrossRefGoogle Scholar
  24. 24.
    L. Jewell, S. Rocco, F. Bridges, S.A. Carter, Phys. Rev. Appl. 7(6), 1 (2017).  https://doi.org/10.1103/PhysRevApplied.7.064026 CrossRefGoogle Scholar
  25. 25.
    G.L. Agawane, A.S. Kamble, S.A. Vanalakar, S.W. Shin, M.G. Gang, J.H. Yun, J. Gwak, A.V. Moholkar, J.H. Kim, Mater. Lett. 158, 58 (2015).  https://doi.org/10.1016/j.matlet.2015.05.036 CrossRefGoogle Scholar
  26. 26.
    A. Aldalbahi, E.M. Mkawi, K. Ibrahim, M.A. Farrukh, Sci. Rep. 6, 1 (2016).  https://doi.org/10.1038/srep32431 CrossRefGoogle Scholar
  27. 27.
    Y. Jin, G. Chumanov, Eur. J. Inorg. Chem. 2017(31), 3761 (2017).  https://doi.org/10.1002/ejic.201700137 CrossRefGoogle Scholar
  28. 28.
    Y.X. Wang, M. Wei, F.J. Fan, T.T. Zhuang, L. Wu, S.H. Yu, C.F. Zhu, Chem. Mater. 26(19), 5492 (2014).  https://doi.org/10.1021/cm501424n CrossRefGoogle Scholar
  29. 29.
    H. Yoo, J. Kim, Thin Solid Films 518, 6567 (2010).  https://doi.org/10.1016/j.tsf.2010.03.058 ADSCrossRefGoogle Scholar
  30. 30.
    S. Marchionna, P. Garattini, A. Le Donne, M. Acciarri, S. Tombolato, S. Binetti, Thin Solid Films 542, 114 (2013).  https://doi.org/10.1016/j.tsf.2013.06.084 ADSCrossRefGoogle Scholar
  31. 31.
    H. Araki, Y. Kubo, K. Jimbo, W.S. Maw, H. Katagiri, M. Yamazaki, K. Oishi, A. Takeuchi, Phys. Status Solidi Curr. Top. Solid State Phys. 6, 1266 (2009).  https://doi.org/10.1002/pssc.200881182 ADSCrossRefGoogle Scholar
  32. 32.
    K. Wang, O. Gunawan, T. Todorov, B. Shin, S.J. Chey, N.A. Bojarczuk, D. Mitzi, S. Guha, Appl. Phys. Lett. 97(14), 1 (2010).  https://doi.org/10.1063/1.3499284 CrossRefGoogle Scholar
  33. 33.
    S.W. Shin, S.M. Pawar, C.Y. Park, J.H. Yun, J.-H. Moon, J.H. Kim, J.Y. Lee, Sol. Energy Mater. Sol. Cells 95, 3202 (2011).  https://doi.org/10.1016/j.solmat.2011.07.005 CrossRefGoogle Scholar
  34. 34.
    T. Tanaka, D. Kawasaki, M. Nishio, Q. Guo, H. Ogawa, Phys. Status Solidi (C) Curr. Topics Solid State Phys. 3(8), 2844 (2006).  https://doi.org/10.1002/pssc.200669631 ADSCrossRefGoogle Scholar
  35. 35.
    B.A. Schubert, B. Marsen, S. Cinque, T. Unold, R. Klenk, S. Schorr, H.W. Schock, Prog. Photovolt. Res. Appl. 19(1), 93 (2011).  https://doi.org/10.1002/pip.976 CrossRefGoogle Scholar
  36. 36.
    K. Moriya, K. Tanaka, H. Uchiki, Jpn. J. Appl. Phys. 47((1 PART 2)), 602 (2008).  https://doi.org/10.1143/JJAP.47.602 ADSCrossRefGoogle Scholar
  37. 37.
    A.V. Moholkar, S.S. Shinde, A.R. Babar, K.U. Sim, Y. Bin Kwon, K.Y. Rajpure, P.S. Patil, C.H. Bhosale, J.H. Kim, Solar Energy 85(7), 1354 (2011).  https://doi.org/10.1016/j.solener.2011.03.017 ADSCrossRefGoogle Scholar
  38. 38.
    P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, Thin Solid Films 517, 2519 (2009).  https://doi.org/10.1016/j.tsf.2008.11.031 ADSCrossRefGoogle Scholar
  39. 39.
    A. Weber, R. Mainz, H.W. Schock, J. Appl. Phys. 107, 013516 (2010).  https://doi.org/10.1063/1.3273495 ADSCrossRefGoogle Scholar
  40. 40.
    J.J. Scragg, D.M. Berg, P.J. Dale, J. Electroanal. Chem. 646(1–2), 52 (2010).  https://doi.org/10.1016/j.jelechem.2010.01.008 CrossRefGoogle Scholar
  41. 41.
    R. Colina-Ruiz, Estudio de la estructura atómica local de películas delgadas semiconductoras de Cu2ZnSnS4. Master’s thesis, CINVESTAV-Merida (2014)Google Scholar
  42. 42.
    J. Arias-Ortiz, Desarrollo de materiales para celdas solares basadas en Kesteritas. Master’s thesis, Instituto Politécnico Nacional (IPN) (2015)Google Scholar
  43. 43.
    A. Weber, R. Mainz, T. Unold, S. Schorr, H.W. Schock, Phys. Status Solidi (C) Curr. Topics Solid State Phys. 6(5), 1245 (2009).  https://doi.org/10.1002/pssc.200881231 ADSCrossRefGoogle Scholar
  44. 44.
    J.J. Scragg, Copper Zinc Tin Sulfide Thin Films for Photovoltaics: Synthesis and Characterisation by Electrochemical Methods (Springer, New York, 2011).  https://doi.org/10.1007/978-3-642-22919-0 CrossRefGoogle Scholar
  45. 45.
    M. Bär, B.A. Schubert, B. Marsen, S. Schorr, R.G. Wilks, L. Weinhardt, S. Pookpanratana, M. Blum, S. Krause, Y. Zhang, W. Yang, T. Unold, C. Heske, H.W. Schock, Phys. Rev. B 84(3), 035308 (2011).  https://doi.org/10.1103/PhysRevB.84.035308 ADSCrossRefGoogle Scholar
  46. 46.
    M. Mousel, A. Redinger, R. Djemour, M. Arasimowicz, N. Valle, P. Dale, S. Siebentritt, Thin Solid Films 535(1), 83 (2013).  https://doi.org/10.1016/j.tsf.2012.12.095 ADSCrossRefGoogle Scholar
  47. 47.
    T. Kobayashi, K. Jimbo, K. Tsuchida, S. Shinoda, T. Oyanaoi, H. Katagiri, Jpn. J. Appl. Phys. Part 1 44(1 B), 783 (2005).  https://doi.org/10.1143/JJAP.44.783 CrossRefGoogle Scholar
  48. 48.
    K. Tanaka, Y. Fukui, N. Moritake, H. Uchiki, Solar Energy Mater. Solar Cells 95(3), 838 (2011).  https://doi.org/10.1016/j.solmat.2010.10.031 CrossRefGoogle Scholar
  49. 49.
    M. Gang, K. Gurav, S. Shin, C. Hong, J. Min, M. Suryawanshi, S. Vanalakar, D. Lee, J. Kim, Phys. Status Solidi (C) Curr. Topics Solid State Phys. 12(6), 713 (2015).  https://doi.org/10.1002/pssc.201400285 ADSCrossRefGoogle Scholar
  50. 50.
    J.C. González, P.A. Fernandes, G.M. Ribeiro, A. Abelenda, E.R. Viana, P.M.P. Salomé, A.F. Da Cunha, Solar Energy Mater. Solar Cells 123, 58 (2014).  https://doi.org/10.1016/j.solmat.2014.01.005 CrossRefGoogle Scholar
  51. 51.
    H.J. Chen, S.W. Fu, S.H. Wu, T.C. Tsai, H.T. Wu, C.F. Shih, J. Am. Ceram. Soc. 99(5), 1808 (2016).  https://doi.org/10.1111/jace.14153 CrossRefGoogle Scholar
  52. 52.
    W. Feng, J. Han, J. Ge, X. Peng, Y. Liu, Y. Jian, L. Yuan, X. Xiong, L. Cha, C. Liao, J. Electron. Mater. (2016).  https://doi.org/10.1007/s11664-016-4873-y CrossRefGoogle Scholar
  53. 53.
    S. Chen, J.H. Yang, X.G. Gong, A. Walsh, S.H. Wei, Phys. Rev. B 81(24), 35 (2010).  https://doi.org/10.1103/PhysRevB.81.245204 CrossRefGoogle Scholar
  54. 54.
    G.P. Bernardini, D. Borrini, A. Caneschi, F. Di Benedetto, D. Gatteschi, S. Ristori, M. Romanelli, Phys. Chem. Miner. 27(7), 453 (2000).  https://doi.org/10.1007/s002690000086 ADSCrossRefGoogle Scholar
  55. 55.
    B.D. Cullity, Elements of X-ray Diffraction (Prentice Hall, New York, 1978)Google Scholar
  56. 56.
    G.K. Williamson, W.H. Hall, Acta Metall. 1(1), 22 (1953).  https://doi.org/10.1016/0001-6160(53)90006-6 CrossRefGoogle Scholar
  57. 57.
    M.Z. Ansari, N. Khare, Mater. Sci. Semicond. Process. 63, 220 (2017).  https://doi.org/10.1016/j.mssp.2017.02.011 CrossRefGoogle Scholar
  58. 58.
    P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, Semicond. Sci. Technol. 24, 105013 (2009).  https://doi.org/10.1088/0268-1242/24/10/105013 ADSCrossRefGoogle Scholar
  59. 59.
    T.S. Tlemçani, E.B. Benamar, F.C. El Moursli, F. Hajji, Z. Edfouf, M. Taibi, H. Labrim, B. Belhorma, S. Aazou, G. Schmerber, K. Bouras, Z. Sekkat, A. Dinia, A. Ulyashin, A. Slaoui, M. Abd-Lefdil, in Energy Procedia (2015), pp. 127–133.  https://doi.org/10.1016/j.egypro.2015.12.305
  60. 60.
    L. Sun, J. He, H. Kong, F. Yue, P. Yang, J. Chu, Solar Energy Mater. Solar Cells 95(10), 2907 (2011).  https://doi.org/10.1016/j.solmat.2011.06.026 CrossRefGoogle Scholar
  61. 61.
    J. Müller, J. Nowoczin, H. Schmitt, Thin Solid Films 496(2), 364 (2006).  https://doi.org/10.1016/j.tsf.2005.09.077 ADSCrossRefGoogle Scholar
  62. 62.
    M. Wojdyr, J. Appl. Crystallogr. 43((5 Part 1)), 1126 (2010).  https://doi.org/10.1107/S0021889810030499. CrossRefGoogle Scholar
  63. 63.
    A. Khare, B. Himmetoglu, M. Cococcioni, E.S. Aydil, J. Appl. Phys. 111, 123704 (2012)ADSCrossRefGoogle Scholar
  64. 64.
    J. He, L. Sun, Y. Chen, J. Jiang, P. Yang, J. Chu, J. Power Sources 273, 600 (2015).  https://doi.org/10.1016/j.jpowsour.2014.09.088 ADSCrossRefGoogle Scholar
  65. 65.
    X. Fontané, L. Calvo-Barrio, V. Izquierdo-Roca, E. Saucedo, A. Pérez-Rodriguez, J.R. Morante, D.M. Berg, P.J. Dale, S. Siebentritt, Appl. Phys. Lett. 98(18), 2009 (2011).  https://doi.org/10.1063/1.3587614 CrossRefGoogle Scholar
  66. 66.
    X. Fontané, V. Izquierdo-Roca, E. Saucedo, S. Schorr, V.O. Yukhymchuk, M.Y. Valakh, A. Pérez-Rodríguez, J.R. Morante, J. Alloys Compd. 539, 190 (2012).  https://doi.org/10.1016/j.jallcom.2012.06.042 CrossRefGoogle Scholar
  67. 67.
    D.K. Kaushik, T.N. Rao, A. Subrahmanyam, Surf. Coat. Technol. 314, 85 (2017).  https://doi.org/10.1016/j.surfcoat.2016.09.034 CrossRefGoogle Scholar
  68. 68.
    V. Kumar, S Kr Sharma, T.P. Sharma, V. Singh, Opt. Mater. 12(1), 115 (1999).  https://doi.org/10.1016/S0925-3467(98)00052-4 ADSCrossRefGoogle Scholar
  69. 69.
    C. Malerba, F. Biccari, C.L.A. Ricardo, M. Valentini, R. Chierchia, M. Müller, A. Santoni, E. Esposito, P. Mangiapane, P. Scardi, A. Mittiga, J. Alloys Compd. 582, 528 (2014).  https://doi.org/10.1016/j.jallcom.2013.07.199 CrossRefGoogle Scholar
  70. 70.
  71. 71.
    M.V. Kurik, Phys. Status Solidi (A) 8(1), 9 (1971).  https://doi.org/10.1002/pssa.2210080102. ADSCrossRefGoogle Scholar
  72. 72.
    F. Caballero-Briones, A. Palacios-Padrós, O. Calzadilla, F. Sanz, Electrochimica Acta 55(14), 4353 (2010).  https://doi.org/10.1016/j.electacta.2009.10.031 CrossRefGoogle Scholar
  73. 73.
    G. Rey, G. Larramona, S. Bourdais, C. Choné, B. Delatouche, A. Jacob, G. Dennler, S. Siebentritt, Solar Energy Mater. Solar Cells 179, 142 (2018).  https://doi.org/10.1016/j.solmat.2017.11.005 CrossRefGoogle Scholar
  74. 74.
    S. Paul, I. Gulyas, I.L. Repins, S. Mou, J.V. Li, Thin Solid Films 675, 103 (2019).  https://doi.org/10.1016/j.tsf.2019.01.052 ADSCrossRefGoogle Scholar
  75. 75.
    H. Hempel, R. Eichberger, I. Repins, T. Unold, Thin Solid Films 666(August), 40 (2018).  https://doi.org/10.1016/j.tsf.2018.09.027 ADSCrossRefGoogle Scholar
  76. 76.
    X. Li, H. Cao, Y. Dong, F. Yue, Y. Chen, P. Xiang, L. Sun, P. Yang, J. Chu, J. Alloys Compd. 694, 833 (2017).  https://doi.org/10.1016/j.jallcom.2016.10.024 CrossRefGoogle Scholar
  77. 77.
    S. Chen, A. Walsh, X.G. Gong, S.H. Wei, Adv. Mater. 25(11), 1522 (2013).  https://doi.org/10.1002/adma.201203146 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Física AplicadaCINVESTAV Unidad MéridaMéridaMexico
  2. 2.Laboratorio de Materiales FotovoltaicosInstituto Politécnico NacionalAltamiraMexico
  3. 3.Escuela de IngenieríaUniversidad Marista de MéridaMéridaMexico

Personalised recommendations