Advertisement

Applied Physics A

, 125:322 | Cite as

Comprehensive characterization of magnetite-based colloid for biomedical applications

  • V. A. Ryzhov
  • I. A. Kiselev
  • O. P. Smirnov
  • Yu. P. Chernenkov
  • V. V. DeriglazovEmail author
  • Ya. Yu. Marchenko
  • L. Y. Yakovleva
  • B. P. Nikolaev
  • Yu. V. Bogachev
Article
  • 23 Downloads

Abstract

An aqueous colloidal solution of dextran-coated magnetite nanoparticles was studied by nonlinear second-harmonic magnetic response (M2), transmission electron microscopy (TEM), dynamic light scattering (DLS) and electron magnetic resonance (EMR). Nanoparticles were found to aggregate. A set of magnetic parameters of the aggregates, such as the mean magnetic moment, the magnetization damping constant, the longitudinal relaxation time, the field and energy of magnetic anisotropy, and others were evaluated from M2 measurements with the data processing formalism based on the Gilbert–Landau–Lifshitz (GLL) equation for the stochastic dynamics of superparamagnetic (SP) particles. Combined with TEM and DLS, the M2 technique additionally enabled the differentiation between magnetic and nonmagnetic components of the colloid. To achieve full numerical consistency between the parameters obtained from the M2 and TEM data, magnetic correlations of nanoparticles inside the aggregates were taken into account and their correlation radius was evaluated. The observed crossover in the magnetic field dependence of the EMR signal occurring due to the break of the dipole–dipole (d–d) coupling between nanoparticles in the aggregates was described using the M2 and TEM data.

Notes

Acknowledgements

Results of this study were obtained using the supercomputer of Peter the Great Saint-Petersburg Polytechnic University Supercomputing Center (http://www.spbstu.ru). The authors are grateful to A.V. Arutyunyan for helpful discussions, to A.M. Ischenko for permanent interest and support of the study, to I.I. Larionov for assistance in the M2 measurements, and to A.I. Zaitseva for help in the preparation of the manuscript.

References

  1. 1.
    M. Wankhede, A. Bouras, M. Kaluzova, C.G. Hadjipanayis, Clin. Pharmacol. 5, 173 (2012)Google Scholar
  2. 2.
    C. Sun, J.S.H. Lee, M. Zhang, Adv. Drug Deliv. Rev. 60, 1252 (2008)CrossRefGoogle Scholar
  3. 3.
    A.K. Gupta, M. Gupta, Biomaterials 26, 3995 (2005)CrossRefGoogle Scholar
  4. 4.
    Ø. Olsvik, T. Popovic, E. Skjerve, K.S. Cudjoe, E. Hornes, J. Ugelstad, M. Uhlén, Clin. Microbiol. Rev. 7, 43 (1994)CrossRefGoogle Scholar
  5. 5.
    M. Li, H. Deng, H. Peng, Q. Wang, J. Nanosci. Nanotechnol. 14, 415 (2014)CrossRefGoogle Scholar
  6. 6.
    Y.X.J. Wang, Quant Imaging Med. Surg. 1, 35 (2011)Google Scholar
  7. 7.
    A. Akbarzadeh, M. Samiei, S. Davaran, Nanoscale Res. Lett. 7, 144 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    L. Mohammed, H.G. Gomaa, D. Ragab, J. Zhu, Particuology 30, 1 (2017)CrossRefGoogle Scholar
  9. 9.
    S. Rajput, C.U. Pittman, D. Mohan, J. Colloid Interface Sci. 468, 334 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    D. Eberbeck, Ch. Bergemann, F. Wiekhorst, G. Glöckl, Magnetohydrodynamics 41, 305 (2005)ADSGoogle Scholar
  11. 11.
    R. Pastor-Satorras, J.M. Rubí, Phys. Rev. E 51, 5994 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    D. Eberbeck, F. Wiekhorst, U. Steinhoff, L. Trahms, J. Phys.: Condens. Matter 18, S2829 (2006)ADSGoogle Scholar
  13. 13.
    S. Mi, R. Liu, Y. Li, Y. Xie, Z. Chen, J. Magn. Magn. Mater. 428, 235 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    C. Patterson, M. Syed, Y. Takemura, J. Magn. Magn. Mater. 451, 248 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    K.D. Usadel, Phys. Rev. B 95, 104430 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    T.V. Lyutyy, O.M. Hryshko, A.A. Kovner, J. Magn. Magn. Mater. 446, 87 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    A.V. Lazuta, V.A. Ryzhov, I.I. Larionov, T.A. Arbuzova, Physica C 295, 22 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    A.I. Kurbakov, A.V. Lazuta, V.A. Ryzhov, V.A. Trunov, I.I. Larionov, C. Martin, A. Maignan, M. Hervieu, Phys. Rev. B. 72, 184432 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    V.A. Ryzhov, A.V. Lazuta, I.A. Kiselev, V.P. Khavronin, P.L. Molkanov, I.O. Troyanchuk, S.V. Trukhanov, J. Magn. Magn. Mater. 300, e159 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    M.A. Shvetsov, B.P. Nikolaev, V.A. Ryzhov, L.Y. Yakovleva, A.V. Dobrodumov, Y.Y. Marchenko, B.A. Margulis, E. Pitkin, I.V. Guzhova, J. Magn. Magn. Mater. 388, 123 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    S.V. Titov, P.M. Déjardin, H. El Mrabti, YuP Kalmykov, Phys. Rev. B 82, 100413(R) (2010)ADSCrossRefGoogle Scholar
  22. 22.
    H. El Mrabti, S.V. Titov, P.M. Déjardin, YuP Kalmykov, J. Appl. Phys. 110, 023901 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    W.T. Coffey, Yu.P. Kalmykov, in The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering (World Scientific, Singapore, 2017) vol. 28, 4th edn., chap. 9, pp. 495–670Google Scholar
  24. 24.
    M.A. Shevtsov, B.P. Nikolaev, L.Y. Yakovleva, Y.Y. Marchenko, A.V. Dobrodumov, A.L. Michrina, M.G. Martynova, O.A. Bystrova, I.L. Yakovenko, A.M. Ischenko, Int. J. Nanomed. 9, 273 (2014)CrossRefGoogle Scholar
  25. 25.
    C. Suryanarayana, M.G. Norton, X-ray Diffraction: A Practical Approach (Plenum Press Publishing, New York, 1998), pp. 207–221CrossRefGoogle Scholar
  26. 26.
    Q. Li, C.W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, K. Okuyama, Sci. Rep. 7, 9894 (2017). and references thereinADSCrossRefGoogle Scholar
  27. 27.
    G.K. Anisimov, R.P. Devyaterikov, E.I. Zavatskii, V.V. Lavrov, V.A. Ryzhov, D.M. Fel’dman, V.N. Fomichev, Sov. Phys. Tech. Phys. 27(1), 46 (1982)Google Scholar
  28. 28.
    V.A. Ryzhov, I.I. Larionov, V.N. Fomichev, Tech. Phys. 41(6), 620 (1996)Google Scholar
  29. 29.
    B.D. Gullity, C.D. Graham, Introduction to Magnetic Materials (Wiley-IEEE Press, New York, 2009), 2nd edn., chap. 11, pp. 359–408Google Scholar
  30. 30.
    A.V. Lazuta, V.A. Ryzhov, V.V. Runov, V.P. Khavronin, V.V. Deriglazov, Phys. Rev. B 92, 014404 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    J.L. Garca-Palacios, Adv. Chem. Phys. 112, 1–210 (2000)Google Scholar
  32. 32.
    W.T. Coffey, D.S.F. Crothers, YuP Kalmykov, E.S. Massawe, J.T. Waldron, J. Magn. Magn. Mater. 127, L254 (1993)ADSCrossRefGoogle Scholar
  33. 33.
    W.T. Coffey, P.J. Cregg, D.S.F. Crothers, J.T. Waldron, A.W. Wickstead, J. Magn. Magn. Mater. 131, L301 (1994)ADSCrossRefGoogle Scholar
  34. 34.
    W.T. Coffey, D.S.F. Crothers, YuP Kalmykov, E.S. Massawe, J.T. Waldron, Phys. Rev. E 49, 1869 (1994)ADSCrossRefGoogle Scholar
  35. 35.
    V. Schaller, G. Wahnström, A. Sanz-Velasco, S. Gustafsson, E. Olsson, P. Enoksson, C. Johansson, Phys. Rev. B. 80, 092406 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    F. Ahrentorp, A. Astalan, J. Blomgren, C. Jonasson, E. Wetterskog, P. Svedlindh, A. Lak, F. Ludwig, L.J. van IJzendoorn, F. Westphal, C. Grüttner, N. Gehrke, S. Gustafsson, E. Olsson, C. Johansson, J. Magn. Magn. Mater. 380, 221 (2015)Google Scholar
  37. 37.
    G.F. Goya, T.S. Berquó, F.C. Fonseca, M.P. Morales, J. Appl. Phys. 94, 3520 (2003)ADSCrossRefGoogle Scholar
  38. 38.
    R.A. Bini, R.F.C. Marques, F.J. Santos, J.A. Chaker, M. Jafelicci Jr., J. Magn. Magn. Mater. 324, 534 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    V.A. Ryzhov, E.I. Zavatskii, V.A. Solov’ev, I.A. Kiselev, V.N. Fomichev, V.A. Bikineev, Tech. Phys. 40, 71 (1995)Google Scholar
  40. 40.
    A.V. Lazuta, V.A. Ryzhov, O.P. Smirnov, I.A. Kiselev, YuP Chernenkov, S.A. Borisov, I.O. Troyanchuk, D.D. Khalyavin, J. Magn. Magn. Mater. 300, 44 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    V.A. Ryzhov, A.V. Lazuta, O.P. Smirnov, I.A. Kiselev, YuP Chernenkov, S.A. Borisov, I.O. Troyanchuk, D.D. Khalyavin, Phys. Rev. B 72, 134427 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    O.N. Sorokina, A.L. Kovarskii, M.A. Lagutina, S.A. Dubrovskii, F.S. Dzheparov, Appl. Sci. 2, 342 (2012)CrossRefGoogle Scholar
  43. 43.
    F. Gazeau, J.C. Bacri, F. Gendron, R. Perzynski, YuL Raikher, V.I. Stepanov, E. Dubois, J. Magn. Magn. Mater. 186, 175 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    N. Noginova, F. Chen, T. Weaver, E.P. Giannelis, A.B. Bourlinos, V.A. Atsarkin, J. Phys.: Condens. Matter 19, 246208 (2007)ADSGoogle Scholar
  45. 45.
    M. Yahya, F. Hosni, A. M’Nif, A.H. Hamzaoui, J. Magn. Magn. Mater. 466, 341 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    N. Wei, D. Byrne, W.T. Coffey, YuP Kalmykov, S.V. Titov, J. Appl. Phys. 116, 173903 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • V. A. Ryzhov
    • 1
  • I. A. Kiselev
    • 1
  • O. P. Smirnov
    • 1
  • Yu. P. Chernenkov
    • 1
  • V. V. Deriglazov
    • 1
    Email author
  • Ya. Yu. Marchenko
    • 2
  • L. Y. Yakovleva
    • 2
  • B. P. Nikolaev
    • 2
  • Yu. V. Bogachev
    • 3
  1. 1.Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center Kurchatov InstituteGatchinaRussia
  2. 2.Research Institute of Highly Pure BiopreparationsSt-PetersburgRussia
  3. 3.St-Petersburg State Electrotechnical University LETISt-PetersburgRussia

Personalised recommendations