Applied Physics A

, 125:285 | Cite as

Processing and characterization of novel calcium titanate/Na-titanate nanotube/rutile nanocomposite coating on titanium metal

  • Nasser Y. MostafaEmail author
  • Atiat Montaser
  • Reem A. Al-Affray
  • M. M. Kamel
  • A. Alhadhrami


A novel nanocomposite coating, containing calcium titanate (CaTiO3), sodium titanate nanotube (Na-T) and rutile, was prepared on a titanium substrate. At first, calcium phosphate was deposited electrochemically on Ti substrate. Hydrothermal processing at 130 °C in 10 M NaOH transformed calcium phosphate layer into well-crystallized calcium titanium oxide hydroxide (Kassite) and titanium surface into Na-T. Annealing at 350 °C transformed the titanium metal surface into rutile (TiO2) and the final coating was CaTiO3/Na-T/rutile composite. Hydrothermal treatment decreases adhesion bond strength and microhardness. Although the adhesion strength of the final coating was comparative to that of the initial coating, hardness and corrosion resistance were increased with annealing at 350 °C due to the formation of buffer layer of rutile phase.



  1. 1.
    A. Elyada, N. Garti, H. Füredi-Milhofer, Biomacromol 15, 3511–3521 (2014)CrossRefGoogle Scholar
  2. 2.
    N.Y. Mostafa, Mater. Chem. Phys. 94, 333–341 (2005)CrossRefGoogle Scholar
  3. 3.
    N.Y. Mostafa, H.M. Hassan, O.H. Abd Elkader, J. Am. Ceramic Soc. 94, 1584–1590 (2011)CrossRefGoogle Scholar
  4. 4.
    N.Y. Mostafa, A.A. Shaltout, L. Radev, H.M. Hassan, Cent. Eur. J. Chem. 11, 140–150 (2013)Google Scholar
  5. 5.
    N.Y. Mostafa, H.M. Hassan, F.H. Mohamed, J. Alloy. Compd. 479, 692–698 (2009)CrossRefGoogle Scholar
  6. 6.
    S. Yang, H.C. Man, W. Xing, X. Zheng, Surf. Coat. Technol. 203, 3116–3122 (2009)CrossRefGoogle Scholar
  7. 7.
    I. Demnati, M. Parco, D. Grossin, I. Fagoaga, C. Drouet, G. Barykin, C. Combes, I. Braceras, S. Goncalves, C. Rey, Surf. Coat. Technol. 206, 2346–2353 (2012)CrossRefGoogle Scholar
  8. 8.
    W. Mroz, B. Budner, R. Syroka, K. Niedzielski, G. Golanski, A. Slosarczyk, D. Schwarze, T.E.L. Douglas, J. Biomed. Mater. Res. B Appl. Biomater. 103, 151–158 (2015)CrossRefGoogle Scholar
  9. 9.
    P. Rajesh, C.V. Muraleedharan, S. Sureshbabu, M. Komath, H. Varma, J. Mater. Sci. Mater. Med. 23, 339–348 (2012)CrossRefGoogle Scholar
  10. 10.
    J.V. Rau, A. Generosi, S. Laureti, V.S. Komlev, D. Ferro, S.N. Cesaro, B. Paci, V.R. Albertini, E. Agostinelli, S.M. Barinov, ACS Appl. Mater. Interfaces. 1, 1813–1820 (2009)CrossRefGoogle Scholar
  11. 11.
    A. Abdi Bastami, H. Farnoush, A. Sadeghi, J. Aghazadeh Mohandesi, Surface Eng. 29, 205–210 (2013)CrossRefGoogle Scholar
  12. 12.
    M.C. Advincula, D. Petersen, F. Rahemtulla, R. Advincula, J.E. Lemons, J. Biomed. Mater. Res. B Appl. Biomater. 80, 107–120 (2007)CrossRefGoogle Scholar
  13. 13.
    C. Chen, I.S. Lee, S.M. Zhang, H.C. Yang, Acta Biomater. 6, 2274–2281 (2010)CrossRefGoogle Scholar
  14. 14.
    D.O. Costa, B.A. Allo, R. Klassen, J.L. Hutter, S.J. Dixon, A.S. Rizkalla, Langmuir 28, 3871–3880 (2012)CrossRefGoogle Scholar
  15. 15.
    G. Sun, J. Ma, S. Zhang, Mater. Sci. Eng. C 39, 67–72 (2014)CrossRefGoogle Scholar
  16. 16.
    M. Pisarek, A. Roguska, L. Marcon, M. Andrzejczuk, M. Janik-Czachor, Arch. Metall. Mater. 58, 261–267 (2013)CrossRefGoogle Scholar
  17. 17.
    R. Drevet, H. Benhayoune, Mater. Sci. Eng. C 33, 4260–4265 (2013)CrossRefGoogle Scholar
  18. 18.
    R. Drevet, F. Velard, S. Potiron, D. Laurent-Maquin, H. Benhayoune, J. Mater. Sci. Mater. Med. 22, 753–761 (2011)CrossRefGoogle Scholar
  19. 19.
    E.A. Abdel-Aal, Int. J. Nano Biomater. 3, 187–202 (2010)CrossRefGoogle Scholar
  20. 20.
    O. Reigstad, V. Franke-Stenport, C.B. Johansson, A. Wennerberg, M. Røkkum, A. Reigstad, J.Biomed. Mater. Res. B Appl. Biomater. 83, 9–15 (2007)CrossRefGoogle Scholar
  21. 21.
    D. He, Q. Zhao, C. Wang, H. Zhang, X. Zhang, P. Liu, X. Liu, Appl. Mech. Mater. 80, 426–430 (2009)Google Scholar
  22. 22.
    Y. Wang, X. Lu, J. Zhao, B. Feng, J. Wang, S. Qu, J. Weng, J. Chen, Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Mater. Eng. 38, 1071–1075 (2009)Google Scholar
  23. 23.
    K.H. Kim, R. Narayanan, T.R. Rautray, Surface modification of titanium for biomaterial applications. Nova Science Publisher. ISBN: 978-1-60876-539-3 (2010)Google Scholar
  24. 24.
    H.W. Kim, E.J. Lee, I.K. Jun, H.E. Kim, J. Biomed. Mater. Res. A 75, 656–667 (2005)CrossRefGoogle Scholar
  25. 25.
    N.Y. Mostafa, M.M. Kamel, Surf. Eng. Appl. Electrochem. 52, 520–523 (2016)CrossRefGoogle Scholar
  26. 26.
    H. Tang, F. Wang, Mater. Lett. 93, 427–430 (2013)CrossRefGoogle Scholar
  27. 27.
    M. Kon, R. Sultana, E. Fujihara, K. Asaoka, T. Ichikawa, Key Eng. Mater. 330, 737–740 (2007)CrossRefGoogle Scholar
  28. 28.
    M. Manso, M. Langlet, J.M. Martínez-Duart, Mater. Sci. Eng., C 23, 447–450 (2003)CrossRefGoogle Scholar
  29. 29.
    N. Ohtsu, K. Sato, A. Yanagawa, K. Saito, Y. Imai, T. Kohgo, A. Yokoyama, K. Asami, T. Hanawa, J. Biomed. Mater. Res. A 82, 304–315 (2007)CrossRefGoogle Scholar
  30. 30.
    N. Ohtsu, K. Sato, K. Saito, K. Asami, T. Hanawa, J. Mater. Sci. Mater. Med. 18, 1009–1016 (2007)CrossRefGoogle Scholar
  31. 31.
    M. Sato, R. Tu, T. Goto, K. Ueda, T. Narushima, Key Eng. Mater. 352, 301–304 (2007)CrossRefGoogle Scholar
  32. 32.
    M. Sato, R. Tu, T. Goto, Mater. Trans. 47, 2603–2605 (2006)CrossRefGoogle Scholar
  33. 33.
    N. Ohtsu, M. Hayashi, J. Ueta, T. Kanno, Prog. Org. Coat. 70, 353–357 (2011)CrossRefGoogle Scholar
  34. 34.
    J.P. Wiff, V.M. Fuenzalida, R.A. Zárate, J.L. Arias, M.S. Fernández, J. Phys. Condens. Matter 16, S1345–S1350 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    S. Wu, B. Tu, J. Lin, Z. Wang, X. Wang, M. Shen, R. Hu, Biocybern. Biomed. Eng. 35, 296–303 (2015)CrossRefGoogle Scholar
  36. 36.
    J. Ouyang, X. Sun, X. Chen, J. Chen, X. Zhuang, J. Mater. Sci. 49, 1882–1892 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    Y.J. Huang, M.C. Tsai, H.T. Chiu, H.S. Sheu, C.Y. Lee, Cryst. Growth Des. 10, 1307–1311 (2010)CrossRefGoogle Scholar
  38. 38.
    X. Gan, X. Gao, J. Qiu, P. He, X. Li, X. Xiao, Cryst. Growth Des. 12, 289–296 (2012)CrossRefGoogle Scholar
  39. 39.
    N.Y. Mostafa, Z.M. El-Bahy, J. Environ. Chem. Eng. 3, 744–751 (2015)CrossRefGoogle Scholar
  40. 40.
    Y. Guo, N.H. Lee, H.J. Oh, C.R. Yoon, K.S. Park, S.C. Jung, S.J. Kim, Surf. Coat. Technol. 202, 5431–5435 (2008)CrossRefGoogle Scholar
  41. 41.
    Y. Guo, N.H. Lee, H.J. Oh, C.R. Yoon, K.S. Park, H.G. Lee, K.S. Lee, S.J. Kim, Nanotechnology 18, 295608 (2007)CrossRefGoogle Scholar
  42. 42.
    A.R. Boyd, G.A. Burke, H. Duffy, M.L. Cairns, P. O’Hare, B.J. Meenan, J. Mater. Sci. Mater. Med. 19, 485–498 (2008)CrossRefGoogle Scholar
  43. 43.
    C. Ergun, Z. Evis, R.H. Doremus, Proceedings of the 7th biennial conference on engineering systems design and analysis, ESDA 2004, 2004, pp. 305–309Google Scholar
  44. 44.
    B. Zhao, W. Bai, F. Cui, H. Feng, J. Stomatol. 13, 385–388 (2004)Google Scholar
  45. 45.
    T. Blalock, X. Bai, A. Rabiei, Surf. Coat. Technol. 201, 5850–5858 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceTaif UniversityTaifSaudi Arabia
  2. 2.Chemistry Department, Faculty of ScienceSuez Canal UniversityIsmailiaEgypt
  3. 3.Chemistry Department, Faculty of ScienceAswan UniversityAswanEgypt

Personalised recommendations