Applied Physics A

, 125:326 | Cite as

Effect of silver dopant on structural and optical properties of ZnO nanoparticles

  • Neha SharmaEmail author
  • Raminder Preet Pal Singh
  • Varun Sharma


The synthesis of AgxZn1−xO is completed by chemical precipitation method and then X-ray diffraction is used to detail out the structural parameters (like crystallite size and phase identification). A hexagonal wurtzite structure is confirmed after analyzing the XRD results, which shows a single phase. The crystallite size and microstrain are evaluated by different models of W–H and SSP method; their values show an increasing pattern with the rise in the doping element. While band gap value decreases with rise in the concentration ratio of silver doping, in contrast to this Urbach energy (eV) is opposite to the band gap value that is evaluated by the absorption spectra of UV–Vis. This is mostly used in the optoelectronic application. The FTIR (Fourier transmission infrared spectroscopy) results are detailed about functional bonds; Ag bonds appear in its representation within ZnO bond. FESEM confirmed that the aggregation formation increases with increases in silver doping concentrations.


Compliance with ethical standards

Conflict of interest

All the authors declare that they have no competing interests.


  1. 1.
    S.S. Kim, J.H. Moon, B.T. Lee, O.S. Song, J.H. Je, J. Appl. Phys. 95, 454–459 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988–990 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    J.R. Harbour, M.L. Hair, J. Phys. Chem. 83, 652–656 (1979)CrossRefGoogle Scholar
  4. 4.
    K. Sato, H. Katayama-Yoshida, Jpn. J. Appl. Phys. 39, L555 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    J.J. Wu, S.C. Liu, Adv. Mater. 14, 215–218 (2002)CrossRefGoogle Scholar
  6. 6.
    S.M. Hosseini, I.A. Sarsari, P. Kameli, H. Salamati, J. Alloy Compd. 640, 408 (2015)CrossRefGoogle Scholar
  7. 7.
    R. Chauhan, A. Kumar et al., Arch. Appl. Sci. Res. 2378, 85 (2010)Google Scholar
  8. 8.
    A.Y. Ozlem, E.U. Husnu, D. Caner, J. Am. Ceram. Soc. 96, 766–773 (2013)CrossRefGoogle Scholar
  9. 9.
    N. Sharma, S. Kumar et al., Appl. Phys. A 124, 373 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    R.S. Zeferino, M.B. Flores, U. Pal, J. Appl. Phys. 109, 014308 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    N.M. Basith, J.J. Vijaya et al., J. Mater. Sci. Technol. 30, 1108–1117 (2014)CrossRefGoogle Scholar
  12. 12.
    O. Volnianska et al., Phys Rev B. 80, 245212 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    V.D. Mote et al., J. Theor. Appl. Phys. 6, 6 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    N. Sharma, R. Kant et al., J. Electron. Mater. 47, 4098–4107 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    M.M. Rahman et al., Microchim. Acta 178, 99–106 (2012)CrossRefGoogle Scholar
  16. 16.
    R. Varadhaseshan et al., Euro. Phys. J. Appl. Phys. 66, 10602 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    A.S. Ahmed et al., J. Lumin. 131, 1–6 (2011)CrossRefGoogle Scholar
  18. 18.
    S. Suwanboon et al., Ceram. Int. 37, 1359–1365 (2011)CrossRefGoogle Scholar
  19. 19.
    J. Tauc, Amorphous and liquid semiconductors (Springer, Boston, 1974)CrossRefGoogle Scholar
  20. 20.
    R. Elilarassi, G. Chandrasekaran, J. Mater. Sci. Mater. Electron. 21, 1168–1173 (2010)CrossRefGoogle Scholar
  21. 21.
    R.P.P. Singh et al., J. Supercond. Nov. Magn. 28, 3685–3691 (2015)CrossRefGoogle Scholar
  22. 22.
    M. Caglar, F. Yakuphanoglu, Appl. Surf. Sci. 258, 3039–3044 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Neha Sharma
    • 1
    Email author
  • Raminder Preet Pal Singh
    • 2
  • Varun Sharma
    • 3
  1. 1.Department of PhysicsArni UniversityKangraIndia
  2. 2.Department of PhysicsShiv Shankar Institute of Engineering TechnologyPattiIndia
  3. 3.Department of Computer ScienceDesh Bhagat UniversityMandi GobindgarhIndia

Personalised recommendations