Advertisement

Applied Physics A

, 125:324 | Cite as

Synthesis of cobalt/calcium nanoferrites with controllable physical properties

  • Ebtesam E. AteiaEmail author
  • Mohamed Farag
Article
  • 33 Downloads

Abstract

In the present study, Co1−xCaxFe2O4 (0.0 ≤ x ≤ 1.0) were prepared by the citrate auto-combustion method. The evaluation of XRD patterns and HRTEM images indicated a fine particle nature. The average crystallite sizes are found to be in the range of 7.979–37.730 nm. The prepared calcium sample showed a orthorhombic phase structure, while the other investigated samples showed a cubic spinel structure. Elemental maps with the energy-dispersive X-ray spectroscopy (EDAX) analysis provide a visual representation of the elements present. The magnetic hysteresis measurements at different temperatures (77, 100, and 300 K) were achieved using a vibrating sample magnetometer. Magnetic constants such as magnetic moment, squareness ratio, saturation magnetization, coercivity, maximum energy density, and the switching field distribution were calculated and reported. The obtained data shows that, the shape of investigated nanoferrite particles can be used as a powerful tool for adapting magnetic properties. The appearance of double peaks in SFD reveals the competition between strong dipolar interactions and exchange coupling. The substitution of calcium instead of cobalt decreases the magnetic energy loss and the switching field distribution. However, for these reasons, the studied samples can be used in transformer cores and high density recording.

Notes

References

  1. 1.
    S.V. Trukhanov, A.V. Trukhanov, M.M. Salem, E.L. Trukhanova, L.V. Panina, V.G. Kostishyn, M.A. Darwish, A.V. Trukhanov, T.I. Zubar, D.I. Tishkevich, V. Sivakov, D.A. Vinnik, S.A. Gudkova, S. Charanjeet, Preparation and investigation of structure, magnetic and dielectric properties of (BaFe11.9Al0.1O19)1-x - (BaTiO3)x bicomponent ceramics. Ceram. Int. 44(17), 21295–21302 (2018).  https://doi.org/10.1016/j.ceramint.2018.08.180 CrossRefGoogle Scholar
  2. 2.
    C.C. Chauhan, A.R. Kagdi, R.B. Jotania, A. Upadhyay, C.S. Sandhu, S.E. Shirsath, S.S. Meena, Structural, magnetic and dielectric properties of Co-Zr substituted M-type calcium hexagonal ferrite nanoparticles in the presence of α-Fe2O3 phase. Ceram. Int. 44(15), 17812–17823 (2018)CrossRefGoogle Scholar
  3. 3.
    R.A. Nandotaria, R.B. Jotania, C.S. Sandhu, M. Hashim, S.S. Meena, P. Bhatt, S.E. Shirsath, Magnetic interactions and dielectric dispersion in Mg substituted M-type Sr-Cu hexaferrite nanoparticles prepared using one step solvent free synthesis technique. Ceram. Int. 44, 4426–4435 (2018)CrossRefGoogle Scholar
  4. 4.
    R.G.M. Oliveira, D.B. Freitas, G.S. Batista, J.E.V. de Morais, V.C. Martins, M.M. Costa, M.A.S. Silva, D.X. Gouvêa, C. Singh, A.S.B. Sombra, Dielectrical and structural studies of composite matrix BiVO4–CaTiO3 and temperature effects by impedance spectroscopy. J. Mater. Sci.: Mater. Electron. 29(19), 16248–16258 (2018)Google Scholar
  5. 5.
    H. Kaur, C. Singh, A. Marwaha, S.B. Narang, R. Jotania, S.R. Mishra, Y. Bai, K.C.J. Raju, D. Singh, M. Ghimire, P. Dhruv, A.S.B. Sombra, Elucidation of microwave absorption mechanisms in Co–Ga substituted Ba–Sr hexaferrites in X-band. J. Mater. Sci.: Mater. Electron. 29(17), 14995–15005 (2018)Google Scholar
  6. 6.
    K.K. Bamzai, G. Kour, B. Kaur, S.D. Kulkarni, Preparation, and structural and magnetic properties of Ca substituted magnesium ferrite with composition MgCaxFe2−xO4 ( = 0.00, 0.01, 0.03, 0.05, 0.07). J. Mater. Article ID 184340, 8 (2014). http://dx.doi.org/10.1155/2014/184340
  7. 7.
    M. Kurian, S. Thankachan, D.S. Nair, E.K. Aswathy, A. Babu, A. Thomas, K.T. Binu Krishna, Structural, magnetic, and acidic properties of cobalt ferrite nanoparticles synthesised by wet chemical methods. J. Adv. Ceram 4(3), 199–205 (2015)CrossRefGoogle Scholar
  8. 8.
    L. Gama, A.P. Diniz, A.C.F.M. Costa, S.M. Bezende, A. Azevedo, D.R. Cornejo, Magnetic properties of nanocrystalline Ni-Zn ferrites doped with samarium. Physica B: Condens. Matter. 384, 97 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    L. Kumar, P. Kumar, M. Kar, Influence of Mn substitution on crystal structure and magnetocrystalline anisotropy of nanocrystalline Co1−xMnxFe2−2xMn2xO4. Appl. Nanosci. 3(1), 75–82 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    R. Valenzuela, Magnetic Ceramics (Cambridge University Press, New York (NY), 1994)CrossRefGoogle Scholar
  11. 11.
    A. Goldman, Modern Ferrite Technology (Springer, New York, 2006)Google Scholar
  12. 12.
    J.P. Mojgan, H.B. Mostafa, S. Farzaneh, Anhydride functionalised calcium ferrite nanoparticles: a new selective magnetic material for enrichment of lead ions from water and food samples. Food Chem. 170, 131–137 (2015)CrossRefGoogle Scholar
  13. 13.
    L. Khannan, N.K. Verma, Size-dependent magnetic properties of calcium ferrite nanoparticles. J. Magn. Magn. Mater. 336, 1–7 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    H.F. Abosheiashan, S.T. Assar, Effects of sintering process on the structural, magnetic and thermal properties of Ni0.92Ca0.08Fe2O4 nanoferrite. J. Magn. Magn. Mater. 370, 54–61 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    E.E. Ateia, M.K. Abdelamksoud, M.A. Rizk, Improvement of the physical properties of novel (1 − x)CoFe2O4 + (x) LaFeO3 nanocomposites for technological applications. J. Mater. Sci.: Mater. Electron. 28, 16547–16553 (2017).  https://doi.org/10.1007/s10854-017-7567-1 CrossRefGoogle Scholar
  16. 16.
    T. Dippong, E.A. Levei, L. Diamandescu, I. Bibicu, C. Leostean, G. Borodi, L.B. Tudoran, Structural and magnetic properties of Co x Fe 3–x O 4 versus Co/Fe molar ratio. J. Magn. Magn. Mater. 394, 111–116 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    L. Khanna, N.K. Verma, Size-dependent magnetic properties of calcium ferrite nanoparticles. J. Magn. Magn. Mater. 336, 1–7 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    S. Manouchehrei, S.T.M. Benehi, M.H. Yousefi, Effect of aluminum doping on the structural and magnetic properties of Mg–Mn ferrite nanoparticles prepared by coprecipitation method. J. Supercond. Magn. 29, 2179–2188 (2016)CrossRefGoogle Scholar
  19. 19.
    E.E. Ateia, M.A. Ahmed, L.M. Salah, A.A. El-Gamal, Effect of rare earth oxides and La3+ ion concentration on some properties of Ni–Zn ferrites. Phys. B 445, 60–67 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    R.J. Hill, J.R. Craig, G.V. Gibbs, Systematics of the spinel structure type. Phys. Chem. Miner. 4, 317–339 (1979)ADSCrossRefGoogle Scholar
  21. 21.
    Periodic Table, SARGENT-WELCH, Scientific Company, 7300 Linder Avenue, Skokie, Illinois 60076, Catalog Number 5-18806Google Scholar
  22. 22.
    E.E. Ateia, A.T. Mohamed, Improvement of the magnetic properties of magnesium nanoferrites via Co2+/Ca2+. Doping J. Supercond. Nov. Magn. J. Supercond. Nov. Magn. 4, 317–339 (2017)Google Scholar
  23. 23.
    R. Ubic, G. Subodh, The prediction of lattice constants in orthorhombic perovskites. J. Alloys Comp. 488, 374–379 (2009)CrossRefGoogle Scholar
  24. 24.
    S.A. Saafan, S.T. Assar, S.F. Mansour, Magnetic and electrical properties of Co1-xCax Fe2O4 nanoparticles synthesized by the auto combustion method. J. Alloys Compd. 542, 192–198 (2012)CrossRefGoogle Scholar
  25. 25.
    H. Hirazawa, S. Kusamoto, H. Aonoa, T. Naohara, K. Mori, Y. Hattori, T. Maehara, Y. Watanabe, J. Alloys Compds. 461, 467–473 (2008)CrossRefGoogle Scholar
  26. 26.
    S.A. Saafan, S.T. Assar, B.M. Moharram, M.K. ElNimr, J. Magn. Magn. Mater. 322, 628–632 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727–1735 (1955)ADSCrossRefGoogle Scholar
  28. 28.
    O. Iglesias, A. Labarta, Role of surface disorder on the magnetic properties and hysteresis of nanoparticles. Phys. B 343, 286–292 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    Y.I. Kima, D. Kima, C.S. Leeb, Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method. Phys. B 337, 42–51 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    E.E. Ateia, A.A. El-Bassuony, G. Abdelatif, F.S. Soliman, Novelty characterization and enhancement of magnetic properties of Co and Cu nanoferrites. J. Mater. Sci.: Mater. Electron. 28, 241–249 (2017)Google Scholar
  31. 31.
    S. Singhal, S. Jauhar, N. Lakshmi, S. Bansal, Mn3+ substituted Co–Cd ferrites, CoCd0.4MnxFe1.6– xO4 (0.1 ≤ x ≤ 0.6): cation distribution, structural, magnetic and electrical properties. J. Mol. Struct. 1038, 45–51 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    S.E. Shirsath, R.H. Kadam, A.S. Gaikwad, A. Ghasemi, A. Morisako, Effect of sintering temperature and the particle size on the structural and magnetic properties of nanocrystalline Li0.5Fe2.5O4. J. Magn. Magn. Mater. 323, 3104–3108 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    M.R. Loghman-Estarki, S. Torkian, R. Amini Rastabi, A. Ghasemi, Effect of annealing temperature and copper mole ratio on the morphology, structure and magnetic properties of Mg0.5−xCuxZn0.5Fe2O4 nanoparticles prepared by the modified Pechini method. J. Magn. Magn. Mater. 442, 163–175 (2017).  https://doi.org/10.1016/j.jmmm.2017.06.104 ADSCrossRefGoogle Scholar
  34. 34.
    A.R. Rouhani, A.H. Esmaeil‐Khanian, F. Davar, S. Hasani, The effect of agarose content on the morphology, phase evolution, and magnetic properties of CoFe2O4 nanoparticles prepared by sol–gel auto combustion method. Int. J. Appl. Ceram. Technol. 15, 758–765 (2018)CrossRefGoogle Scholar
  35. 35.
    K.H.J. Buschow, G.J. Long, F. Grandjean, High Density Digital Recording, NATO ASI Series E, vol. 29 (Kluwer Academic Publishers, Boston, 1993)CrossRefGoogle Scholar
  36. 36.
    D. Jiles, Introduction to Magnetism and Magnetic Materials (Chapman and Hall, New York, 1991)CrossRefGoogle Scholar
  37. 37.
    O. Hellwig, A. Berger, J.B. Kortright, E.E. Fullerton, Domain structure and magnetization reversal of antiferromagnetically coupled perpendicular anisotropy films. J. Magn. Magn. Mater. 319, 13 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    A. Berger, H. Hopster, Magnetization reversal properties near the reorientation phase transition of ultrathin Fe/Ag(100) films. J. Appl. Phys. 79, 5619 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceCairo UniversityGizaEgypt
  2. 2.Egypt Nanotechnology Center (EGNC)Cairo UniversityGizaEgypt

Personalised recommendations