Advertisement

Applied Physics A

, 125:293 | Cite as

Planar Hall effect and anisotropic magnetoresistance in semiconducting and conducting oxide thin films

  • Christer R. AkoualaEmail author
  • Raj Kumar
  • Sandhyarani Punugupati
  • C. Lewis ReynoldsJr.
  • Judith G. Reynolds
  • Edward J. Mily
  • Jon-Paul Maria
  • Jagdish Narayan
  • Frank Hunte
Article
  • 35 Downloads

Abstract

Transport measurement techniques are generally considered to be indirect methods of probing the phenomenology of materials and hence are limited in scope and require careful interpretation. However, when performed with due care and precision in addition to other characterization methods, magnetotransport measurements are an essential tool in the study of magnetic and electronic materials particularly in proving potential devices that function on the basis of charge or spin transport. In this work, we demonstrate the advantage of employing a method that simultaneously measures the planar Hall effect and the anisotropic magnetoresistance which are two aspects of the resistivity anisotropy to characterize a range of semiconducting and conducting oxide thin films. The development of novel magnetotransport characterization methods is motivated by the need for reliable measurements of the electronic properties of a wide range of materials under varying thermal, mechanical and magnetic conditions.

Notes

Acknowledgements

Part of this research was supported by the National Science Foundation and the Army Research Office. We gratefully acknowledge the support from the Extreme Light Sources DARPA project W31P4Q-08-1-0003 administered by the University of Florida. The corresponding author would like to thank John Christopher Ledford for his assistance with measurements using the SQUID and PPMS facility in the Department of Materials Science and Engineering at North Carolina State University.

References

  1. 1.
    G.A. Prinz, Science 282, 1660–1663 (1998)CrossRefGoogle Scholar
  2. 2.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488–1495 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    I. Žutić, J. Fabian, S. Das Sarma, Rev. Mod. Phys., 76, 323–410 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    H. Ohno, Science 281, 951–956 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    V. Avrutin, N. Isyumskaya, U. Ozgur, D.J. Silversmith, H. Morkoc, Proceedings IEEE 98, 1288–1301 (2010)CrossRefGoogle Scholar
  6. 6.
    V. Ström, B.J. Jönsson, K.V. Rao, E.D. Dahlberg, J. Appl. Phys. 81, 5003–5005 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    B.H. Miller, E.D. Dahlberg, Appl. Phys. Lett. 69, 3932–3934 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    D. Venus, F. Hunte, Phys. Rev. B 72, 024404 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    D. Venus, F. Hunte, E. Dahlberg, J. Magn. Magn. Mater., 286, 191–195 (2005)Google Scholar
  10. 10.
    D. Venus, F. Hunte, I.N. Krivorotov, T. Gredig, E.D. Dahlberg, J. Appl. Phys. 93, 8609–8611 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    F. Hunte, Determination of Exchange Anisotropy by ac-AMR and Planar Hall Effect. PhD Dissertation, School of Physics and Astronomy, University of Minnesota, Twin Cities, MN, 2004Google Scholar
  12. 12.
    N.A. Spaldin, Magnetic materials: fundamentals and applications, 2nd edn. (Cambridge University Press, Cambridge, New York, 2011)Google Scholar
  13. 13.
    Y. Bason, L. Klein, J.B. Yau, X. Hong, C.H. Ahn, Appl. Phys. Lett. 84, 2593–2595 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    C.M. Hurd, The Hall effect in metals and alloys (Plenum Press, New York, 1972)CrossRefGoogle Scholar
  15. 15.
    R.R. Birss, Symmetry and magnetism (North-Holland, Amsterdam, 1966)Google Scholar
  16. 16.
    P. Ciureanu, Magnetoresistive sensors, 1st edn. (Institute of Physics Publishing, Bristol, 1992)Google Scholar
  17. 17.
    T. McGuire, R. Potter, IEEE Trans. Magn. 11, 1018–1038 (1975)ADSCrossRefGoogle Scholar
  18. 18.
    L. Guohong, Y. Tao, H. Qiang, Appl. Phys. Lett. 77, 1032–1034 (2000)CrossRefGoogle Scholar
  19. 19.
    A.O. Adeyeye, M.T. Win, T.A. Tan, G.S. Chong, V. Ng, T.S. Low, Sens. Actuators, A 116, 95–102 (2004)CrossRefGoogle Scholar
  20. 20.
    H.X. Tang, R.K. Kawakami, D.D. Awschalom, M.L. Roukes, Phys. Rev. Lett. 90, 107201 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    R. Arnab, P.S.A. Kumar, J. Phys. D Appl. Phys. 43, 365001 (2010)CrossRefGoogle Scholar
  22. 22.
    A. Schuhl, F.N. Van Dau, J.R. Childress, Appl. Phys. Lett. 66, 2751–2753 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    A.V. Trukhanov, S.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, D.A. Vinnik, E.S. Yakovenko, V.V. Zagorodnii, V.L. Launetz, V.V. Oliynyk, T.I. Zubar, D.I. Tishkevich, E.L. Trukhanova, J. Magn. Magn. Mater. 462, 127–135 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    S.V. Trukhanov, A.V. Trukhanov, L.V. Panina, V.G. Kostishyn, V.A. Turchenko, E.L. Trukhanova, A.V. Trukhanov, T.I. Zubar, V.M. Ivanov, D.I. Tishkevich, D.A. Vinnik, S.A. Gudkova, D.S. Klygach, M.G. Vakhitov, P. Thakur, A. Thakur, Y. Yang, J. Magn. Magn. Mater. 466, 393–405 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    S.V. Trukhanov, N.V. Kasper, I.O. Troyanchuk, M. Tovar, H. Szymczak, K. Bärner, J. Solid State Chem. 169, 85–95 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, V.A. Khomchenko, N.V. Pushkarev, I.O. Troyanchuk, A. Maignan, D. Flahaut, H. Szymczak, R. Szymczak, Eur. Phys. J. B Condens. Matter Complex Syst. 42, 51–61 (2004)CrossRefGoogle Scholar
  27. 27.
    S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, A.M. Balagurov, H. Szymczak, J. Exp. Theor. Phys. 113, 819–825 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    J.G. Reynolds, C.L. Reynolds, A. Mohanta, J.F. Muth, J.E. Rowe, H.O. Everitt, D.E. Aspnes, Appl. Phys. Lett. 102, 152114 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    R.E. Hummel, Electronic properties of materials, 3rd edn. (Springer, New York, 2005)Google Scholar
  30. 30.
    W.C. Mackrodt, R.F. Stewart, J.C. Campbell, I.H. Hillier, J. Phys. Colloques, 41, C6-64-C66-67 (1980)Google Scholar
  31. 31.
    S. Mal, S. Nori, J. Chunming, J. Narayan, S. Nellutla, A.I. Smirnov, J.T. Prater, J. Appl. Phys. 108, 073510 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    S. Mal, J. Narayan, S. Nori, J.T. Prater, D. Kumar, Solid State Commun. 150, 1660–1664 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    J.M.D. Coey, Solid State Sci. 7, 660–667 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    R.J.D. Tilley, Defects in solids (Wiley, Hoboken, 2008)CrossRefGoogle Scholar
  35. 35.
    G. Pacchioni, Chem. Phys. Chem 4, 1041–1047 (2003)CrossRefGoogle Scholar
  36. 36.
    J. Li, Y. Jiang, Y. Li, D. Yang, Y. Xu, M. Yan, Appl. Phys. Lett. 102, 072404–072406 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    T. Risse, A. Gonchar, T. Risse, H.-J. Freund, E. Giamello, Phys. Chem. Chem. Phys. 12, 12520–12524 (2010)CrossRefGoogle Scholar
  38. 38.
    J.H. Schulman, W.D. Compton, Color centers in solids (Pergamon Press, Oxford, 1963)Google Scholar
  39. 39.
    D. Gao, D. Gao, J. Zhang, G. Yang, J. Qi, M. Si, D. Xue, J. Phys. Chem. C 115, 16405–16410 (2011)CrossRefGoogle Scholar
  40. 40.
    B. Choudhury, A. Choudhury, Curr. Appl. Phys. 13, 1025–1031 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    Y.-C. Chen, E. Goering, L. Jeurgens, Z. Wang, F. Phillipp, J. Baier, T. Tietze, G. Schütz, Appl. Phys. Lett. 103, 162405 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    H. Ren, G. Xiang, G. Gu, X. Zhang, W. Wang, P. Zhang, B. Wang, X. Cao, J. Nanomater. 2012, 295358 (2012)Google Scholar
  43. 43.
    S. Mal, T.-H. Yang, C. Jin, S. Nori, J. Narayan, J.T. Prater, Scripta Mater. 65, 1061–1064 (2011)CrossRefGoogle Scholar
  44. 44.
    D.F. Wang, J.M. Kim, V.T.T. Thuy, M.S. Seo, Y.P. Lee, J. Korean Phys. Soc. 58, 1304–1306 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    G. Xing, D. Wang, J. Yi, L. Yang, M. Gao, M. He, J. Yang, J. Ding, T.C. Sum, T. Wu, Appl. Phys. Lett. 96, 112511 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    G.D. Mahan, Many-particle physics, 3rd edn. (Kluwer Academic/Plenum Publishers, New York, 2000)CrossRefGoogle Scholar
  47. 47.
    C. Kittel, Introduction to solid-state physics, 6th edn. (Wiley, New York, 1986)zbMATHGoogle Scholar
  48. 48.
    J.D. Patterson, B.C. Bailey, Solid-state physics: introduction to the theory, 2nd edn. (Springer, Berlin, 2010)CrossRefGoogle Scholar
  49. 49.
    J. Ghijsen, L.H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G.A. Sawatzky, M.T. Czyzyk, Phys. Rev. B 38, 11322–11330 (1988)ADSCrossRefGoogle Scholar
  50. 50.
    T. Kataoka, Y. Yamazaki, V.R. Singh, A. Fujimori, F.H. Chang, H.J. Lin, D.J. Huang, C.T. Chen, G.Z. Xing, J.W. Seo, C. Panagopoulos, T. Wu, Phys. Rev. B 84, 153203 (2011)ADSCrossRefGoogle Scholar
  51. 51.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Christer R. Akouala
    • 1
    Email author
  • Raj Kumar
    • 1
  • Sandhyarani Punugupati
    • 1
  • C. Lewis ReynoldsJr.
    • 1
  • Judith G. Reynolds
    • 1
    • 2
  • Edward J. Mily
    • 1
  • Jon-Paul Maria
    • 1
  • Jagdish Narayan
    • 1
  • Frank Hunte
    • 1
  1. 1.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA
  2. 2.Department of PhysicsNorth Carolina State UniversityRaleighUSA

Personalised recommendations