Applied Physics A

, 125:286 | Cite as

Au/GLAD-SnO2 nanowire array-based fast response Schottky UV detector

  • Priyanka Chetri
  • Jay Chandra DharEmail author


In this paper, we have demonstrated UV photodetector based on SnO2 nanowire (NW) arrays fabricated using a catalytic free and controlled growth process called glancing angle deposition technique. The fabricated SnO2 NWs were amorphous in nature with highly periodic and perpendicularly oriented structures of length ~ 160 ± 5 nm with ~ 60 ± 5 nm average diameter. The reported Au/SnO2 NW/n-Si device showed a good rectifying behavior with a rectification ratio of ~ 6 due to the formation of high-quality Schottky contact at the Au/SnO2 NW interface. The Au/SnO2 NW/n-Si device exhibited a high responsivity (0.142 A/W) and external quantum efficiency (56.8%) at − 2 V applied bias as compared to the Au/SnO2 thin-film (TF)/n-Si device. Moreover, the Au/SnO2 NW/n-Si device attained a high detectivity of 10.8 × 1010 Jones and noise equivalent power as low as 38.8 × 10−12 W. The high surface to volume ratio and the enormous amount of photogenerated carriers in case of SnO2 NW arrays made the Au/SnO2 NW/n-Si device to exhibit high photosensitivity. Furthermore, on UV illumination, the Au/SnO2 NW/n-Si detector showed fast device response with a rise time of 0.18 s and a fall time of 0.25 s. The current conduction mechanism in case of Au/SnO2 NW/n-Si device is explained with respect to device band diagram.



The authors are thankful to NPCRE LAB, IIT Bombay for FE-SEM along with EDX facility and SAIF, NEHU for TEM analysis. The authors are also thankful to Dr. Debarun Dhar Purkayastha, Department of Physics, NIT Nagaland for providing absorption measurement facility and NIT Nagaland for financial support.


  1. 1.
    M. Mishra, A. Gundimeda, S. Krishna, N. Aggarwal, L. Goswami, B. Gahtori, B. Bhattacharyya, S. Husale, G. Gupta, ACS Omega 3, 2304–2311 (2018)CrossRefGoogle Scholar
  2. 2.
    J.L. Hou, S.J. Chang, C.H. Wu, T.J. Hsueh, IEEE Electron Device Lett. 34, 1023–1025 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Z.H. Wang, H.C. Yu, C.C. Yang, H.T. Yeh, Y.K. Su, IEEE Trans. Electron Devices 64, 3206–3212 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    H.Y. Liu, G.J. Liu, IEEE Trans. Electron Devices 64, 1108–1113 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    X. Li, X. Xiong, Q. Zhang, Mater. Res. Express 4(045018), 1–15 (2017)ADSGoogle Scholar
  6. 6.
    W.B.H. Othmen, Z.B. Hamed, B. Sieber, A. Addad, H. Elhouichet, R. Boukherroub, Appl. Surf. Sci. 434, 879–890 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    A. Singh, A. Sharma, M. Tomar, V. Gupta, Nanotechnology 29(065502), 1–12 (2018)Google Scholar
  8. 8.
    P. Ghamgosar, F. Rigoni, S. You, I. Dobryden, M.G. Kohan, A.L. Pellegrino, I. Concina, N. Almqvist, G. Malandrino, A. Vomiero, Nano Energy 51, 308–316 (2018)CrossRefGoogle Scholar
  9. 9.
    D. Chen, L. Wei, L. Meng, D. Wang, Y. Chen, Y. Tian, S. Yan, L. Mei, J. Jiao, J. Alloys Comp. 751, 56–61 (2018)CrossRefGoogle Scholar
  10. 10.
    Z. Lou, X. Yang, H. Chen, Z. Liang, J. Semicond. 39(024002), 1–6 (2018)Google Scholar
  11. 11.
    A. Kushwaha, M. Aslam, J. Appl. Phys. 112(054316), 1–8 (2012)Google Scholar
  12. 12.
    E.A. Azhar, W. Ye, B. Helfrecht, G. Chen, L. Thompson, H. Yu, S. Dey, IEEE Trans. Electron Devices 65, 3291–3299 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    M. Summers, M. Brett, Nanotechnology 19(415203), 1–7 (2008)Google Scholar
  14. 14.
    M.S. Bannur, A. Antony, K.I. Maddani, P. Poornesh, A. Rao, K.S. Choudhari, Physica E 103, 348–353 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    A. Othonos, M. Zervos, D. Tsokkou, Nanoscale Res. Lett. 4, 828–833 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    X.Q. Pan, L. Fu, J. Electroceram. 7, 35–46 (2001)CrossRefGoogle Scholar
  17. 17.
    K. Arora, N. Goel, M. Kumar, M. Kumar, ACS Photonics 5(6), 1–25 (2018)CrossRefGoogle Scholar
  18. 18.
    S. Hatch, J. Briscoe, A. Sapelkin, W. Gillin, J. Gilchrist, M. Ryan, S. Heutz, S. Dunn, J. Appl. Phys. 113(204501), 1–9 (2013)Google Scholar
  19. 19.
    S. Pan, Q. Liu, J. Zhao, G. Li, A.C.S. Appl, MaterInterfaces 9, 28737–28742 (2017)Google Scholar
  20. 20.
    Y.H. Leung, Z.B. He, L.B. Luo, C.H.A. Tsang, N.B. Wong, W.J. Zhang, S.T. Lee, Appl. Phys. Lett. 96, 05310 (2010)CrossRefGoogle Scholar
  21. 21.
    W.W. Lee, J.H. Lee, S.H. Kim, D.W. Yang, W.I. Park, J. Phys. Chem. 122, 6456–6462 (2018)Google Scholar
  22. 22.
    M.K. Singh, R.K. Pandey, R. Prakash, Org. Electron. 50, 359–366 (2017)CrossRefGoogle Scholar
  23. 23.
    B. Yin, Y. Qiu, H. Zhang, Y. Luo, Y. Zhao, D. Yang, L. Hu, Semicond. Sci. Tech. 32(064002), 1–8 (2017)Google Scholar
  24. 24.
    M. Ozer, D.E. Yildiz, S. Altindal, M.M. Bulbul, Solid-state Electron. 51, 941–949 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    A.B. Yadav, A. Pandey, D. Somvanshi, S. Jit, IEEE Trans. Electron Devices 62, 1879–1884 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    G. Rawat, D. Somvanshi, Y. Kumar, H. Kumar, C. Kumar, S. Jit, IEEE Trans. Nanotech. 16, 49–57 (2017)CrossRefGoogle Scholar
  27. 27.
    A.B. Bhise, D.J. Late, P.S. Walke, M.A. More, V.K. Pillai, I.S. Mulla, D.S. Joag, J. Cryst. Growth 307, 87–91 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    S. Safa, M. Khajeh, R. Azimirad, The effects of measuring atmosphere on ultraviolet photodetection performance of ZnO nanostructures. J. Alloys Comp. 735, 1406–1413 (2018)CrossRefGoogle Scholar
  29. 29.
    R.A. Rani, A.S. Zoolfakar, N.S. Khairir, M.H. Mamat, S. Alrokayan, H.A. Khan, M.R. Mahmood, J. Mater. Sci.: Mater. Electron. 29, 16765–16774 (2018)Google Scholar
  30. 30.
    S.J. Young, Y.H. Liu, Sens. Actuators, A 269, 363–368 (2018)CrossRefGoogle Scholar
  31. 31.
    P. Li, H. Shi, K. Chen, D. Guo, W. Cui, Y. Zhi, S. Wang, Z. Wu, Z. Chen, W. Tang, J. Mater. Chem. C5, 10562–10570 (2017)Google Scholar
  32. 32.
    A.R.M. Foisal, T. Dinh, P. Tanner, H.P. Phan, T.K. Nguyen, E.W. Streed, D.V. Dao, IEEE Electron Device Lett. 39, 1219–1222 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    R. Bhardwaj, P. Sharma, R. Singh, S. Mukherjee, IEEE Photonics Technology Lett. 29, 1215–1218 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringNational Institute of Technology NagalandDimapurIndia

Personalised recommendations