Applied Physics A

, 125:329 | Cite as

Preparation of antistatic epoxy resin by functionalization of MWCNTs with Fe3O4-modified polyaniline under a magnetic field

  • Peng Kong
  • Chen Zhang
  • Zhongjie Du
  • Hong Wang
  • Wei ZouEmail author


Aiming at improving the surface antistatic property of epoxy resins by a low dosage of antistatic agents, a novel strategy was carried out by utilizing an antistatic agent with a magnetic material, functional multi-wall carbon nanotubes with Fe3O4-modified polyaniline (MWCNTs@PANI-SH@Fe3O4). Here, the MWCNTs@PANI-SH@Fe3O4 was evenly mixed, dispersed into the epoxy resin and did not form a conductive network in the resin matrix due to the less additive amount of the MWCNTs@PANI-SH@Fe3O4; in such a case, we put the mixture above in a magnetic field, and the MWCNTs@PANI-SH@Fe3O4 had directional movement along the direction of the magnetic field to the surface layer of epoxy resin. When the amount of the magnetic antistatic agent per unit volume increased to a certain extent, the conductive network was formed. The surface resistivity was decreased to 6.8 × 108 Ω sq−1 at 0.3 wt% concentration of MWCNTs@PANI-SH@Fe3O4.



This work was supported by National Natural Science Foundation of China (Project no. 51203007).


  1. 1.
    F. El-Tantawy, K. Kamada, H. Ohnabe, In situ network structure, electrical and thermal properties of conductive epoxy resin–carbon black composites for electrical heater applications. Mater. Lett. 56(1), 112–126 (2002)CrossRefGoogle Scholar
  2. 2.
    F.L. Jin, X. Li, S.J. Park, Synthesis and application of epoxy resins: a review. J. Ind. Eng. Chem. 29, 1–11 (2015)CrossRefGoogle Scholar
  3. 3.
    S. Bellucci, L. Coderoni, F. Micciulla, G. Rinaldi, I. Sacco, The electrical properties of epoxy resin composites filled with Cnts and carbon black. J. Nanosci. Nanotechnol. 11(10), 9110–9117 (2011)CrossRefGoogle Scholar
  4. 4.
    Y. Chekanov, R. Ohnogi, S. Asai, M. Sumita, Electrical properties of epoxy resin filled with carbon fibers. J. Mater. Sci. 34(22), 5589–5592 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    V. Kale, M. Moukwa, Electrostatic dissipation control with an organic flooring system. J. Electrostat. 38(3), 239–248 (1996)CrossRefGoogle Scholar
  6. 6.
    V. Dudler, M.C. Grob, D. Mérian, Percolation network in polyolefins containing antistatic additives Imaging by low voltage scanning electron microscopy. Polym. Degrad. Stabil. 68(3), 373–379 (2000)CrossRefGoogle Scholar
  7. 7.
    Heuer, H.W., Wehrmann, R.: Polymeric anti-static agent: US Patent 9290590(P). 2016-3-22 (2016)Google Scholar
  8. 8.
    M. Mahdiani, F. Soofivand, F. Ansari, M. Salavati-Niasari, Grafting of CuFe12O19 nanoparticles on CNT and graphene: eco-friendly synthesis, characterization and photocatalytic activity. J. Clean. Prod. 176, 1185–1197 (2018)CrossRefGoogle Scholar
  9. 9.
    A. Salehabadi, M. Salavati-Niasari, M. Ghiyasiyan-Arani, Self-assembly of hydrogen storage materials based multi-walled carbon nanotubes (MWCNTs) and Dy3Fe5O12 (DFO) nanoparticles. J. Alloy. Comp. 745, 789–797 (2018)CrossRefGoogle Scholar
  10. 10.
    M. Salavati-Niasari, M. Bazarganipour, Synthesis, characterization and catalytic oxidation properties of multi-wall carbon nanotubes with a covalently attached copper (II) salen complex. Appl. Surf. Sci. 255(17), 7610–7617 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    M. Salavati-Niasari, M. Bazarganipour, Effect of single-wall carbon nanotubes on direct epoxidation of cyclohexene catalyzed by new derivatives of cis-dioxomolybdenum (VI) complexes with bis-bidentate Schiff-base containing aromatic nitrogen–nitrogen linkers. J. Mol. Catal. A Chem. 278(1–2), 173–180 (2007)CrossRefGoogle Scholar
  12. 12.
    S. Mortazavi-Derazkola, M. Salavati-Niasari, O. Amiri, A. Abbasi, Fabrication and characterization of Fe3O4@SiO2@TiO2@ Ho nanostructures as a novel and highly efficient photocatalyst for degradation of organic pollution. J. Energy Chem. 26(1), 17–23 (2017)CrossRefGoogle Scholar
  13. 13.
    D. Ghanbari, M. Salavati-Niasari, Synthesis of urchin-like CdS–Fe3O4 nanocomposite and its application in flame retardancy of magnetic cellulose acetate. J. Ind. Eng. Chem. 24, 284–292 (2015)CrossRefGoogle Scholar
  14. 14.
    D. Ghanbari, M. Salavati-Niasari, M. Ghasemi-Kooch, A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA-based magnetic nanocomposite. J. Ind. Eng. Chem. 20(6), 3970–3974 (2014)CrossRefGoogle Scholar
  15. 15.
    H. Khojasteh, M. Salavati-Niasari, M.P. Mazhari, M. Hamadanian, Preparation and characterization of Fe3O4@SiO2@TiO2@Pd and Fe3O4@ SiO2@TiO2@Pd–Ag nanocomposites and their utilization in enhanced degradation systems and rapid magnetic separation. RSC Adv. 6(81), 78043–78052 (2016)CrossRefGoogle Scholar
  16. 16.
    M. Salavati-Niasari, F. Davar, M. Bazarganipour, Synthesis, characterization and catalytic oxidation of para-xylene by a manganese (III) Schiff base complex on functionalized multi-wall carbon nanotubes (MWNTs). Dalton Trans. 39(31), 7330–7337 (2010)CrossRefGoogle Scholar
  17. 17.
    M. Salavati-Niasari, M. Bazarganipour, Covalent functionalization of multi-wall carbon nanotubes (MWNTs) by nickel (II) Schiff-base complex: synthesis, characterization and liquid phase oxidation of phenol with hydrogen peroxide. Appl. Surf. Sci. 255(5), 2963–2970 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    M. Salavati-Niasari, E. Esmaeili, H. Seyghalkar, M. Bazarganipour, Cobalt (II) Schiff base complex on multi-wall carbon nanotubes (MWNTs) by covalently grafted method: synthesis, characterization and liquid phase epoxidation of cyclohexene by air. Inorg. Chim. Acta 375(1), 11–19 (2011)CrossRefGoogle Scholar
  19. 19.
    M. Salavati-Niasari, A. Badiei, K. Saberyan, Oxovanadium (IV) salophen complex covalently anchored to multi-wall carbon nanotubes (MWNTs) as heterogeneous catalyst for oxidation of cyclooctene. Chem. Eng. J. 173(2), 651–658 (2011)CrossRefGoogle Scholar
  20. 20.
    M. Salavati-Niasari, M. Bazarganipour, Synthesis, characterization and alcohol oxidation properties of multi-wall carbon nanotubes functionalized with a cobalt (II) Schiff base complex. Transit. Metal. Chem. 34(6), 605–612 (2009)CrossRefGoogle Scholar
  21. 21.
    A. Amiri, M. Shanbedi, M. Savari, B.T. Chew, S.N. Kazi, Cadmium ion sorption from aqueous solutions by high surface area ethylene diamine tetraacetic acid-and diethylene triamine pentaacetic acid-treated carbon nanotubes. RSC Adv. 5(87), 71144–71152 (2015)CrossRefGoogle Scholar
  22. 22.
    X. Zhang, J. Zhang, Z. Liu, Tubular composite of doped polyaniline with multi-walled carbon nanotubes. Appl. Phys. A 80(8), 1813–1817 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    J. Zhu, H. Peng, F. Rodriguez-Macias, J.L. Margrave, V.N. Khabashesku, A.M. Imam, K. Lozano, E.V. Barrera, Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes. Adv. Funct. Mater. 14(7), 643–648 (2004)CrossRefGoogle Scholar
  24. 24.
    J. Wei, C. Zhang, Z. Du, H. Li, W. Zou, Modification of carbon nanotubes with 4-mercaptobenzoic acid-doped polyaniline for quantum dot sensitized solar cells. J. Mater. Chem. C 2(21), 4177–4185 (2014)CrossRefGoogle Scholar
  25. 25.
    H. Zhou, C. Zhang, H. Li, Z. Du, Fabrication of silica nanoparticles on the surface of functionalized multi-walled carbon nanotubes. Carbon 49(1), 126–132 (2011)CrossRefGoogle Scholar
  26. 26.
    H.J. Choi, I.Y. Jeon, S.W. Kang, J.B. Baek, Electrochemical activity of a polyaniline/polyaniline-grafted multiwalled carbon nanotube mixture produced by a simple suspension polymerization. Electrochim. Acta 56(27), 10023–10031 (2011)CrossRefGoogle Scholar
  27. 27.
    X. Li, Z. Du, C. Zhang, W. Zou, Preparation of polyaniline grafted multiwalled carbon nanotubes and conductive application in polyetherimide. Polym. Adv. Technol. 24(2), 151–156 (2013)CrossRefGoogle Scholar
  28. 28.
    J. Sun, S. Zhou, P. Hou, Y. Yang, J. Weng, X. Li, M. Li, Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J. Biomed. Mater. Res. A 80(2), 333–341 (2007)CrossRefGoogle Scholar
  29. 29.
    R. Valenzuela, M.C. Fuentes, C. Parra, J. Baeza, N. Duran, S.K. Sharma, M. Knobel, J. Freer, Influence of stirring velocity on the synthesis of magnetite nanoparticles (Fe3O4) by the co-precipitation method. J. Alloy. Compd. 488(1), 227–231 (2009)CrossRefGoogle Scholar
  30. 30.
    M. Cochet, W.K. Maser, A.M. Benito, M.A. Callejas, M.T. Martínez, J.M. Benoit, J. Schreiber, O. Chauvet, Synthesis of a new polyaniline/nanotube composite: “in situ” polymerisation and charge transfer through site-selective interaction. Chem. Commun. 16, 1450–1451 (2001)CrossRefGoogle Scholar
  31. 31.
    E. Khosravifard, M. Salavati-Niasari, M. Dadkhah, G. Sodeifian, Synthesis and characterization of TiO2–CNTs nanocomposite and investigation of viscosity and thermal conductivity of a new nanofluid. J. Nanostruct. 2(2), 191–197 (2012)Google Scholar
  32. 32.
    M. Mahdiani, A. Sobhani, M. Salavati-Niasari, Enhancement of magnetic, electrochemical and photocatalytic properties of lead hexaferrites with coating graphene and CNT: sol-gel auto-combustion synthesis by valine. Sep. Purif. Technol. 185, 140–148 (2017)CrossRefGoogle Scholar
  33. 33.
    T.M. Wu, S.H. Lin, Characterization and electrical properties of polypyrrole/multiwalled carbon nanotube composites synthesized by in situ chemical oxidative polymerization. J. Polym. Sci. Pol. Phys. 44(10), 1413–1418 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    J. Klanwan, N. Akrapattangkul, V. Pavarajarn, T. Seto, Y. Otani, T. Charinpanitkul, Single-step synthesis of MWCNT/ZnO nanocomposite using co-chemical vapor deposition method. Mater. Lett. 64(1), 80–82 (2010)CrossRefGoogle Scholar
  35. 35.
    T.A. Sorenson, S.A. Morton, G.D. Waddill, J.A. Switzer, Epitaxial electrodeposition of Fe3O4 thin films on the low-index planes of gold. J. Am. Chem. Soc. 124(25), 7604–7609 (2002)CrossRefGoogle Scholar
  36. 36.
    N. Arsalani, H. Fattahi, M. Nazarpoor, Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent. Express Polym. Lett. 4(6), 329–338 (2010)CrossRefGoogle Scholar
  37. 37.
    A. Abbasi, D. Ghanbari, M. Salavati-Niasari, M. Hamadanian, Photo-degradation of methylene blue: photocatalyst and magnetic investigation of Fe2O3–TiO2 nanoparticles and nanocomposites. J. Mater. Sci. Mater. El. 27(5), 4800–4809 (2016)CrossRefGoogle Scholar
  38. 38.
    S. Neuville, Carbon structure analysis with differentiated raman spectroscopy: refined raman spectroscopy fundamentals for improved carbon material engineering (LAP Lambert Academic Publishing, Saarbrücken, 2014)Google Scholar
  39. 39.
    L.M. Malard, M.A.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473(5–6), 51–87 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    B. Dischler, P. Koidl, Amorphous hydrogenated carbon films. Proc. EMRS Symp. 17, 189 (1987)Google Scholar
  41. 41.
    J. Sui, J. Li, S. Yang, Z. Li, W. Cai, A facile method to fabricate superparamagnetic γ-Fe2O3/silica nanotubes using multi-walled carbon nanotubes as template. Mater. Lett. 100, 32–35 (2013)CrossRefGoogle Scholar
  42. 42.
    X.L. Xie, Y.W. Mai, X.P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mat. Sci. Eng. R 49(4), 89–112 (2005)CrossRefGoogle Scholar
  43. 43.
    R.X. Wang, H. Wang, K. Zheng, X.Y. Tian, Antistatic poly (ethylene terephthalate)/polyaniline-coating multiwalled carbon nanotubes nanocomposites. Adv. Mater. Res. 549, 553–557 (2012)CrossRefGoogle Scholar
  44. 44.
    C.S. Wu, H.T. Liao, Characterization and antistatic behavior of sio2-functionalized multiwalled carbon nanotube/poly(trimethylene terephthalate) composites. J. Polym. Res. 20(10), 253 (2013)CrossRefGoogle Scholar
  45. 45.
    J. Wang, C. Zhang, Z. Du, H. Li, W. Zou, Functionalization of MWCNTs with silver nanoparticles decorated polypyrrole and their application in antistatic and thermal conductive epoxy matrix nanocomposite. RSC Adv. 6(38), 31782–31789 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Peng Kong
    • 1
  • Chen Zhang
    • 1
    • 2
  • Zhongjie Du
    • 3
  • Hong Wang
    • 1
  • Wei Zou
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijingPeople’s Republic of China
  2. 2.Changzhou Advanced Materials Research InstituteBeijing University of Chemical TechnologyChangzhouPeople’s Republic of China
  3. 3.Office of Scientific Research and DevelopmentBeijing University of Chemical TechnologyBeijingPeople’s Republic of China

Personalised recommendations