Advertisement

Applied Physics A

, 125:282 | Cite as

Sol–gel synthesis of CaLa2(MoO4)4:2xSm3+ microparticles: a red-emitting phosphor with splendid thermal stability for near-ultraviolet-based white light-emitting diodes

  • Luhui Zhou
  • Peng DuEmail author
Article
  • 47 Downloads

Abstract

We dealt with the synthesis and photoluminescence (PL) behaviors of the Sm3+-activated CaLa2(MoO4)4 phosphors. Under 404 nm irradiation, the prepared samples emitted the visible red emissions from the intra-4f transitions of Sm3+ ions. The color coordinate and color purity of the achieved red emissions were (0.629, 0.370) and 78.2%, respectively. The PL-emission intensity was revealed to dependent on the dopant concentration and the optimal value was 3 mol%. By means of the theoretical calculation, it was found that the involved concentration quenching mechanism was dominated by the dipole–dipole interaction and the critical distance was 40.69 Å. Furthermore, the thermal quenching performance of the resultant phosphors was examined utilizing the temperature-dependent PL-emission spectra and the activation energy was decided to be 0.122 eV. Ultimately, through integrating the synthesized phosphors with a commercial near-ultraviolet chip, a red-emitting light-emitting diode was packaged to explore the feasibility of the Sm3+-activated CaLa2(MoO4)4 phosphors for solid-state lighting applications.

Notes

Acknowledgements

This work was supported by the K. C. Wong Magna Fund in Ningbo University (xkzw1507).

References

  1. 1.
    X. Huang, Nat. Photon. 8, 748 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Z. Xia, A. Meijerink, Chem. Soc. Rev. 46, 275 (2017)CrossRefGoogle Scholar
  3. 3.
    Z. Zhou, J. Ni, W. Liu, Q. Liu, Appl. Phys. A 124, 753 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    X. Huang, B. Li, H. Guo, D. Chen, Dyes Pigments 143, 86 (2017)CrossRefGoogle Scholar
  5. 5.
    M. Chen, Z. Xia, M.S. Molokeev, T. Wang, Q. Liu, Chem. Mater. 29, 1430 (2017)CrossRefGoogle Scholar
  6. 6.
    M. Li, L. Wang, W. Ran, C. Ren, Z. Song, J. Shi, J. Lumin. 184, 143 (2017)CrossRefGoogle Scholar
  7. 7.
    P. Du, X. Huang, J.S. Yu, Chem. Eng. J. 337, 91 (2018)CrossRefGoogle Scholar
  8. 8.
    P. Du, J.S. Yu, Appl. Phys. A 101, 125 (2019)Google Scholar
  9. 9.
    B. Li, X. Huang, J. Lin, J. Lumin. 204, 410 (2018)CrossRefGoogle Scholar
  10. 10.
    L. Li, X. Tang, Z. Jiang, X. Zhou, S. Jiang, X. Luo, G. Xiang, K. Zhou, J. Alloys Compd. 701, 525 (2017)Google Scholar
  11. 11.
    C. Liao, R. Cao, W. Wang, W. Hu, G. Zheng, Z. Luo, P. Liu, Mater. Res. Bull. 97, 490 (2018)CrossRefGoogle Scholar
  12. 12.
    J. Fan, W. Zhang, S. Dai, G. Yan, M. Deng, K. Qiu, Ceram. Int. 44, 20028 (2018)CrossRefGoogle Scholar
  13. 13.
    L. Li, S. Fu, Y. Zheng, C. Li, P. Chen, G. Xiang, S. Jiang, X. Zhou, J. Alloys Compd. 738, 473 (2018)CrossRefGoogle Scholar
  14. 14.
    P. Du, J.S. Yu, Microchim. Acta 185, 237 (2018)CrossRefGoogle Scholar
  15. 15.
    P. Du, Y. Hua, J.S. Yu, Chem. Eng. J. 352, 352 (2018)CrossRefGoogle Scholar
  16. 16.
    M.M. Haque, D. Kim, Mater. Lett. 63, 793 (2009)CrossRefGoogle Scholar
  17. 17.
    P. Du, J.S. Yu, Chem. Eng. J. 327, 109 (2017)CrossRefGoogle Scholar
  18. 18.
    L. Qin, Y. Huang, T. Tsuboi, H.J. Seo, Mater. Res. Bull. 47, 4498 (2012)CrossRefGoogle Scholar
  19. 19.
    C.S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov, V. Atuchin, Phys. Chem. Chem. Phys. 17, 19278 (2015)CrossRefGoogle Scholar
  20. 20.
    S.K. Jaganathan, A.J. Peter, J. Lumin. 199, 53 (2018)CrossRefGoogle Scholar
  21. 21.
    Q. Ren, F. Lin, X. Wu, O. Hai, T. Wei, Y. Jiao, H. Li, Mater. Res. Bull. 90, 66 (2017)CrossRefGoogle Scholar
  22. 22.
    W. Xie, G. Liu, X. Dong, J. Wang, W. Yu, RSC Adv. 5, 77866 (2015)CrossRefGoogle Scholar
  23. 23.
    R. Yu, H.M. Noh, B.K. Moon, B.C. Choi, J.H. Jeong, H.S. Lee, K. Jang, S.S. Yi, J. Lumin. 145, 717 (2014)CrossRefGoogle Scholar
  24. 24.
    A. Garbout, T. Turki, M. Ferid, J. Lumin. 196, 326 (2018)CrossRefGoogle Scholar
  25. 25.
    L.L. Wang, H.M. Noh, B.K. Moon, S.H. Park, K.H. Kim, J.S. Shi, J.H. Jeong, J. Phys. Chem. C 119, 15517 (2015)CrossRefGoogle Scholar
  26. 26.
    G. Blasse, Phys. Lett. A 28, 444 (1968)ADSCrossRefGoogle Scholar
  27. 27.
    D.L. Dexter, J. Chem. Phys. 21, 836 (1953)ADSCrossRefGoogle Scholar
  28. 28.
    X. Huang, S. Wang, B. Li, Q. Sun, H. Guo, Opt. Lett. 43, 1307 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    T. Sakthivel, L. Sun, B. Devakumar, B. Li, X. Huang, RSC Adv. 8, 32948 (2018)CrossRefGoogle Scholar
  30. 30.
    J. Zhong, D. Chen, Y. Yuan, L. Chen, H. Yu, Z. Ji, Chem. Eng. J. 309, 795 (2017)CrossRefGoogle Scholar
  31. 31.
    Z. Zhou, N. Zhang, J. Chen, X. Zhou, M.S. Molokeev, C. Guo, J. Ind. Eng. Chem. 65, 411 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Microelectronic Science and EngineeringNingbo UniversityNingboChina
  2. 2.School of Physical Science and TechnologyNingbo UniversityNingboChina

Personalised recommendations