Advertisement

Applied Physics A

, 125:288 | Cite as

Synthesis and analysing the structural, optical, morphological, photocatalytic and magnetic properties of TiO2 and doped (Ni and Cu) TiO2 nanoparticles by sol–gel technique

  • T. Raguram
  • K. S. RajniEmail author
Article
  • 67 Downloads

Abstract

In the present work, Ni2+ and Cu2+ ions are doped with TiO2 using sol–gel technique. The effects of Ni and Cu doping in TiO2 matrix are characterized by XRD, Micro-Raman, FTIR, UV–DRS, PL, and FESEM with EDS. Furthermore, it is analyzed for photocatalytic activity and magnetic applications. From XRD analysis, it is observed that the peaks corresponding to the planes match with the JCPDS data [anatase: 89-4203] of TiO2. The crystallite size of the doped samples is found to be greater than that of TiO2. Micro-Raman analysis shows the confirmation of anatase phase of TiO2. FTIR analysis confirms the presence of functional groups which are presented in the prepared samples. From UV–DRS, the band-gap values of TiO2 and doped TiO2 (Ni2+, Cu2+) are found to be 3.25, 2.48, and 1.25 eV. Photoluminescence (PL) results show an emission edge of Ni- and Cu-doped TiO2 is red shifted which is due to the vacancies of titanium and oxygen imported subsequently during doping. The surface morphology and the elemental composition of Ni- and Cu-doped TiO2 nanoparticles are also analyzed. The photocatalytic activity of all the prepared samples are assessed by methylene blue dye as testing pollutant and visible radiation. The test reveals that Cu–TiO2, Ni–TiO2, and TiO2 show the degradation efficiency of 68.14, 61.04, and 33.32%, thereby showing that the doped TiO2 are more efficient in degrading the pollutant and can be applied for future photocatalytic applications. From VSM analysis, the saturation magnetization of Ni–TiO2 and Cu–TiO2 is found to be weak and can be improved by the synthesis process and the proportion of dopant.

Notes

Acknowledgements

The authors would like to express their gratitude to Dr. M. Karthega, Assistant Professor, Amrita Materials Science Lab, Amrita Vishwa Vidyapeetham, Coimbatore for providing their lab facilities.

References

  1. 1.
    C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, H. Kalt, Phys. Status Solidi B 247, 1424 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    H. Ohno, J. Appl. Phys. 113, 136509 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    H. Ohno, J. Magn. Magn. Mater. 200, 110 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    D.D. Awschalom, M.E. Flatte, Nat. Phys. 3, 153 (2007)CrossRefGoogle Scholar
  6. 6.
    S. Das Sarma, Nat. Mater. 2, 292 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    S. He, H. Bai, G. Liu, Q. Li, S. Yan, Y. Chen, L. Mei, H. Liu, S. Wang, X. Han, Appl. Phys. Lett. 100, 132406 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    H. Ohno, Nat. Mater. 9, 952 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    B. Panigrahy, M. Aslam, D. Bahadur, J. Phys. Chem. C 114, 11758 (2010)CrossRefGoogle Scholar
  10. 10.
    J.M.D. Coey, S.A. Chambers, MRS Bull. 33, 1053 (2008)CrossRefGoogle Scholar
  11. 11.
    A. Ney, T. Kammermeier, K. Ollefs, S. Ye, V. Ney, T.C. Kaspar, S.A. Chambers, F. Wilhelm, A. Rogalev, Phys. Rev. B 81, 054420 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Zirui Jia, Di Lan, Kejun Lin, Ming Qin, Kaichang Kou, Wu Guanglei, Wu Hongjing, J. Mater. Sci. Mater. Electron. 29, 17122 (2018)CrossRefGoogle Scholar
  13. 13.
    K. Olejník, M.H.S. Owen, V. Novák, J. Mašek, A.C. Irvine, J. Wunderlich, T. Jungwirth, Phys. Rev. B 78, 054403 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Z. Jia, K. Lin, G. Wu, H. Xing, H. Wu, NANO Brief Rep. Rev. 13, 1830005 (2018)Google Scholar
  15. 15.
    L. Sang, Y. Zhao, C. Burda, Chem. Rev. 114, 9283 (2014)CrossRefGoogle Scholar
  16. 16.
    S. Qu, Y. Yu, K. Lin, P. Liu, C. Zheng, L. Wang, T. Xu, Z. Wang, H. Wu, J. Mater Sci. Mater Electron. 29, 1232 (2018)CrossRefGoogle Scholar
  17. 17.
    X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao, Science 331, 746 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Y.C. Nah, I. Paramasivam, P. Schmuki, Chem. Phys. Chem. 11, 2698 (2010)CrossRefGoogle Scholar
  19. 19.
    F. Bensouici, M. Bououdina, A.A. Dakhel, R. Tala-Ighil, M. Tounane, A. Iratni, T. Souier, S. Liu, W. Cai, Appl. Surf. Sci. 395, 110 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Xuehong Li, Wu Yun, Yuhua Shen, Yan Sun, Ying Yang, Anjian Xie, Appl. Surf. Sci. 427, 739 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    Q. Wang, X. Liu, X. Wei, J. Dai, W. Li, J. Nanomater. 2015, 5 (2015) (Article ID 371582) Google Scholar
  22. 22.
    Y. Alivov, V. Singh, Y. Ding, L.J. Cerkovnik, P. Nagpal, Nanoscale 4, 10839 (2014)CrossRefGoogle Scholar
  23. 23.
    S.A. Chambers, T. Droubay, Appl. Phys. Lett. 82, 1257 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    K.A. Griffin, A.B. Pakhomov, C.M. Wang, S.M. Heald, K.M. Krishnan, J. Appl. Phys. 97, D320 (2005)CrossRefGoogle Scholar
  25. 25.
    H.H. Nguyen, W. Prellier, J. Sakai, A. Ruyter, J. Appl. Phys. 95, 7378 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    C.M. Wang, V. Shutthanandan, S. Thevuthasan, T. Droubay, S.A. Chambers, J. Appl. Phys. 97, 073502-1 (2005) (Article ID 073502) Google Scholar
  27. 27.
    R. Suryanarayanan, V.M. Naik, P. Kharel, P. Talagala, R. Naik, Solid State Commun. 133, 439 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    P.K. Khanna, N. Singh, S. Charan, Mater. Lett. 61, 4725 (2007)CrossRefGoogle Scholar
  29. 29.
    C.Y. Wang, C. Böttcher, D.W. Bahnemann, J.K. Dohrmann, J. Mater. Chem. 13, 2322 (2003)CrossRefGoogle Scholar
  30. 30.
    N.R.S. Farley, C.R. Staddon, L. Zhao, K.W. Edmonds, B.L. Gallagher, D.H. Gregory, J. Mater. Chem. 14, 1087 (2004)CrossRefGoogle Scholar
  31. 31.
    G. Colon, M. Maicu, M.C. Hidalgo, J.A. Navio, Appl. Catal. B 67, 41 (2006)CrossRefGoogle Scholar
  32. 32.
    K.H. Yoon, J.S. Noh, C.H. Kwon, M. Muhammed, Mater. Chem. Phys. 95, 79 (2006)CrossRefGoogle Scholar
  33. 33.
    M. Yan, F. Chen, J. Zhang, M. Anpo, J. Phys. Chem. B 109, 8673 (2005)CrossRefGoogle Scholar
  34. 34.
    M. Saleem, L. Fang, H.B. Ruan, F. Wu, Q.L. Huang, C.L. Xu, C.Y. Kong, Int. J. Phys. Sci. 7, 2971 (2012)CrossRefGoogle Scholar
  35. 35.
    A.S. Hassanien, A.A. Akl, A.H. Saaedi, Cryst. Eng. Commun. 20, s1716 (2018)CrossRefGoogle Scholar
  36. 36.
    A.A. Kl, A.S. Hassanien, Int. J. Adv. Res. 2, 1 (2014)Google Scholar
  37. 37.
    A.S. Hassanien, A.A. Akl, Phys. B 473, 11 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    S. Kumar, T.K. Song, S. Gautam, K.H. Chae, S.S. Kim, K.W. Jang, MRS Bull. (2015).  https://doi.org/10.1016/j.materresbull.2015.02.020
  39. 39.
    Wu Hongjing, Wu Guanglei, Liuding Wang, Powder Technol. 269, 443 (2015)CrossRefGoogle Scholar
  40. 40.
    H. Wu, S. Qu, K. Lin, Y. Qing, L. Wang, Y. Fan, Q. Fu, F. Zhang, Powder Technol. 333, 153 (2018)ADSCrossRefGoogle Scholar
  41. 41.
    I. Ganesh, A.K. Gupta, P.P. Kumar, P.S.C. Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, Sci. World J.  https://doi.org/10.1100/2012/127326
  42. 42.
    M. Mikami, S. Nakamura, O. Kitao, H. Arakawa, Phys. Rev. B 66, 6 (2004)Google Scholar
  43. 43.
    C. Stella, D. Prabhakar, M. Prabhu, N. Soundararajan, K. Ramachandran, Mater. Electron. 27, 636 (2016)CrossRefGoogle Scholar
  44. 44.
    J.K. Zhou, Y.X. Zhang, X.S. Zhao, A.K. Ray, Ind. Eng. Chem. Res. 45, 3503 (2006)CrossRefGoogle Scholar
  45. 45.
    Di Lan, Ming Qin, Ruisheng Yang, Shuang Chen, Wu Hongjing, Yuancheng Fan, Fu Quanhong, Fuli Zhang, J. Colloid Interface Sci. 533, 481 (2018)ADSCrossRefGoogle Scholar
  46. 46.
    M. Sahu, P. Biswas, Nanoscale Res. Lett. 6, 441 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    J.C. Parker, R.W. Siegel, Appl. Phys. Lett. 57, 943 (1990)ADSCrossRefGoogle Scholar
  48. 48.
    X. Xue, W. Ji, Z. Mao, H. Mao, Y. Wang, X. Wang, W. Ruan, B. Zhao, J.R. Lombardi, J. Phys. Chem. C 116, 8792 (2012)CrossRefGoogle Scholar
  49. 49.
    Biswajit Choudhury, Munmun Dey, Amarjyoti Choudhury, Int. Nano Lett. 3, 25 (2013)CrossRefGoogle Scholar
  50. 50.
    S.H. Chuang, M.L. Hsieh, S.C. Wu, H.C. Lin, T.S. Chao, T.H. Hou, J. Am. Ceram. Soc. 94, 250 (2011)CrossRefGoogle Scholar
  51. 51.
    M. Picquart, L. Escobar-alarcon, E. Torres, T. Lopez, E. Haro-Poniatowski, J. Mater. Sci. 37, 3241 (2002)ADSCrossRefGoogle Scholar
  52. 52.
    Joseph B. Lambert et al., Introduction to Organic Spectroscopy (Macmillan Publisher, New York, 1987)Google Scholar
  53. 53.
    Y. Nagao, A. Yoshikawa, K. Koumot, T. Kato, Y. Ikuhara, H. Ohta, Appl. Phys. Lett. 97, 172112 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    J.C.S. Wu, C.H. Chen, J. Photochem. Photobiol. A 163, 509 (2004)CrossRefGoogle Scholar
  55. 55.
    T. Morikawa, R. Asahi, T. Ohwaki, K. Aoki, Y. Taga, J. Appl. Phys. 40, L561 (2001)ADSCrossRefGoogle Scholar
  56. 56.
    M. Pal, U. Pal, J.M.G.Y. Jilmenez, F. Perez-Rodriguez, Nanoscale Res. Lett. 7, 1 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    K.R. Anju, T. Radika, R.J. Ramalignam, H.A. Al-Loheda, Optik 165, 408 (2018)ADSCrossRefGoogle Scholar
  58. 58.
    A.K. Tripathi, M.C. Mathpal, P. Kumar, V. Agrahar, M.K. Singh, S.K. Mishra, M.M. Ahmad, A. Agarwal, Adv. Matt. Lett. 6, 201 (2015)CrossRefGoogle Scholar
  59. 59.
    M.M. Momeni, Y. Ghayeb, F. Ezati, J. Colloid Interface Sci. 514, 70 (2018)ADSCrossRefGoogle Scholar
  60. 60.
    S. Challagulla, K. Tarafder, R. Ganesan, S. Roy, J. Phys. Chem. C 121, 27406 (2017)CrossRefGoogle Scholar
  61. 61.
    J. Zhao, Y. Yang, Y. Li, L. Zhao, H. Wang, G. Song, G. Tang, Sol. Energy Mater. Sol. Cells 168, 62 (2017)CrossRefGoogle Scholar
  62. 62.
    I. Ganesh, A.K. Gupta, P.P. Kumar, P.S.C. Sekhar, K. Radha, G. Padamanathan, G. Sundarajan, Sci. World J. (2012).  https://doi.org/10.1100/2012/127326 CrossRefGoogle Scholar
  63. 63.
    B. Unlu, S. Cakar, M. Ozacar, Sol. Energy 166, 441 (2018)ADSCrossRefGoogle Scholar
  64. 64.
    H. Gao, J. Tian, H. Zheng, F. Tan, W. Zhang, J. Sol Gel Sci. Technol. 74, 521 (2015)CrossRefGoogle Scholar
  65. 65.
    A.K. Das, M. Kar, A. Srinivasan, Phys. B 448, 112 (2014)ADSCrossRefGoogle Scholar
  66. 66.
    B. Parveen, M.U. Hassan, Z. Khalid, S. Riaz, S. Naseem, J. Appl. Res. Technol. (2017).  https://doi.org/10.1016/j.jart.2017.01.009 CrossRefGoogle Scholar
  67. 67.
    H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, J. Mater. Chem. C 3, 7677 (2015)CrossRefGoogle Scholar
  68. 68.
    M.J. Calderon, S. Das Sarma, Ann. Phys. 332, 2618 (2007)ADSCrossRefGoogle Scholar
  69. 69.
    M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)ADSCrossRefGoogle Scholar
  70. 70.
    D. Kim, J. Hong, Y.R. Park, K.J. Kim, J. Phys. Condens. Matter 21, 195405 (2009)ADSCrossRefGoogle Scholar
  71. 71.
    B. Praveen, M.U. Hassan, Z. Khalid, S. Riaz, S. Naseem, J. Appl. Res. Technol. 15, 132 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Sciences, Amrita School of EngineeringAmrita Vishwa VidyapeethamCoimbatoreIndia

Personalised recommendations