Applied Physics A

, 125:465 | Cite as

Magnetic and optical properties of new (1 − x) Bi0.5Na0.5TiO3 + x BaMnO3−δ solid solution materials

  • Dung Duc DangEmail author
  • Nguyen The Hung
  • Dorj Odkhuu
Rapid communication


A solid solution of BaMnO3−δ and Bi0.5Na0.5TiO3 was prepared using a sol–gel method. X-ray diffraction analysis of Bi0.5Na0.5TiO3 − x BaMnO3−δ samples indicated a rhombohedral structure of Bi0.5Na0.5TiO3 materials during distortion due to the random distribution of Ba and Mn cations in the host lattice. The substitution of Ba and Mn at A- and B-sites in the perovskite structure of Bi0.5Na0.5TiO3 changed the optical band gap due to local defect and/or promotion of oxygen vacancies. The samples exhibited strong room temperature ferromagnetism, which overcame the weak ferromagnetism and diamagnetism of Bi0.5Na0.5TiO3 materials. Our study provided a flexible approach to integrate the ferromagnetism properties of ferroelectric materials.



This work was financially supported by The Ministry of Science and Technology, Viet Nam, under project number ĐTĐLCN.29/18.


  1. 1.
    P.K. Panda, J. Mater. Sci. 44, 5049–5062 (2009)CrossRefADSGoogle Scholar
  2. 2.
    W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, J. Rödel, J. Electroceram. 29, 71–93 (2012)CrossRefGoogle Scholar
  3. 3.
    T. Takenaka, H. Nagata, J. Eur. Ceram. Soc. 25, 2693–2700 (2005)CrossRefGoogle Scholar
  4. 4.
    J. Rodel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovi, J. Eur. Ceram. Soc. 35, 1659–1681 (2015)CrossRefGoogle Scholar
  5. 5.
    D. Damjanovi, Funct. Mater. Lett. 3, 5–13 (2010)CrossRefGoogle Scholar
  6. 6.
    S. Tong, Y.E. von Schirnding, T. Prapamontol, Bull. World Health Organ. 78, 1068–1077 (2000)Google Scholar
  7. 7.
    G.A. Smolensky, V.A. Isupov, A.I. Agranovskaya, N.N. Krainic, Fizika Tverdogo Tela 2, 2982–2985 (1960)Google Scholar
  8. 8.
    T. Takenaka, K.I. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30, 2236–2239 (1991)CrossRefADSGoogle Scholar
  9. 9.
    W.S. Kang, J.H. Koh, J. Eur. Ceram. Soc. 35, 2057–2064 (2015)CrossRefGoogle Scholar
  10. 10.
    J. Yang, P. Liu, X. Bian, H. Jing, Y. Wang, Y. Zhang, Y. Wu, W. Song, Mater. Sci. Eng. B 176, 260–265 (2011)CrossRefGoogle Scholar
  11. 11.
    A. Moqbool, A. Hussain, J.U. Rahman, J.K. Park, T.G. Park, J.S. Song, M.H. Kim, Trans. Nonferrous Met. Soc. China 24, s146–s151 (2014)CrossRefGoogle Scholar
  12. 12.
    A. Moosavi, M.A. Bahrevar, A.R. Aghaei, P. Ramos, M. Alguero, H. Amorin, J. Phys. D Appl. Phys. 47, 055304 (2014)CrossRefADSGoogle Scholar
  13. 13.
    L.T.H. Thanh, N.B. Doan, N.Q. Dung, L.V. Cuong, L.H. Bac, N.A. Duc, P.Q. Bao, D.D. Dung, J. Electron. Mater. 46, 3367–3372 (2017)CrossRefADSGoogle Scholar
  14. 14.
    M.M. Vopson, Crit. Rev. Sold State Mater. Sci. 0, 1–28 (2014)Google Scholar
  15. 15.
    Y. Zhang, J. Hu, F. Gao, H. Liu, H. Qin, Comput. Theor. Chem. 967, 284–288 (2011)CrossRefGoogle Scholar
  16. 16.
    L. Ju, C. Shi, L. Sun, Y. Zhang, H. Qin, J. Hu, J. Appl. Phys. 116, 083909 (2014)CrossRefADSGoogle Scholar
  17. 17.
    Y. Wang, G. Xu, X. Ji, Z. Ren, W. Weng, P. Du, G. Shen, G. Han, J. Alloy Compound. 475, L25–L30 (2009)CrossRefGoogle Scholar
  18. 18.
    Y. Wang, G. Xu, L. Yang, Z. Ren, X. Wei, W. Weng, Mater. Sci. Polan 27, 471–476 (2009)Google Scholar
  19. 19.
    L.T.H. Thanh, N.B. Doan, L.H. Bac, D.V. Thiet, S. Cho, P.Q. Bao, D.D. Dung, Mater. Lett. 186, 239–242 (2017)CrossRefGoogle Scholar
  20. 20.
    L. Ju, T.S. Xu, Y.J. Zhang, L. Sun, Chin. J. Chem. Phys. 29, 462–466 (2016)CrossRefGoogle Scholar
  21. 21.
    N.T. Hung, L.H. Bac, N.T. Hoang, P.V. Vinh, N.N. Trung, D.D. Dung, Physca B 531, 75–78 (2018)CrossRefADSGoogle Scholar
  22. 22.
    N.T. Hung, L.H. Bac, N.N. Trung, N.T. Hoang, P.V. Vinh, D.D. Dung, J. Magn. Magn. Mater. 451, 183–186 (2018)CrossRefADSGoogle Scholar
  23. 23.
    H. Yang, Y.K. Tang, L.D. Yao, W. Zhang, Q.A. Li, F.Y. Li, C.Q. Jin, R.C. Yu, J Alloys Compound. 432, 283–288 (2007)CrossRefGoogle Scholar
  24. 24.
    E.J. Cussen, P.D. Battle, Chem. Mater. 12, 831–838 (2000)CrossRefGoogle Scholar
  25. 25.
    J.J. Adkin, M.A. Hayward, Chem. Mater. 19, 755–762 (2007)CrossRefGoogle Scholar
  26. 26.
    A.N. Christensen, G. Ollivier, J. Solid State Chem. 4, 131–137 (1972)CrossRefADSGoogle Scholar
  27. 27.
    R.D. Shannon, C.T. Prewitt, Acta Cryst. B 25, 925–946 (1969)CrossRefGoogle Scholar
  28. 28.
    E. Aksel, P. Jakes, E. Erdem, D.M. Smyth, A. Ozarowski, J.v. Tol, J.L. Jones, R.A. Eichel, J. American Ceram. Soc. 94, 1363–1367 (2011)CrossRefGoogle Scholar
  29. 29.
    F. Li, J. Zhai, B. Shen, X. Liu, H. Zeng, Mater. Res. Lett. 6, 345–352 (2018)CrossRefGoogle Scholar
  30. 30.
    E. Erdem, S. Schaab, W. Jo, A. OZarowski, J. V. Tol, R. A. Eichel, Ferroelectrics 428, 116–121 (2012)CrossRefGoogle Scholar
  31. 31.
    C. Chatzichristodoulou, P. Norby, P.V. Hendriksen, M.B. Mogensen, J. Electroceram. 34, 100–107 (2015)CrossRefGoogle Scholar
  32. 32.
    M.K. Niranjan, T. Karthik, S. Asthana, J. Pan, J. Appl. Phys. 113, 194106 (2013)CrossRefADSGoogle Scholar
  33. 33.
    Y. Chen, K.H. Lam, D. Zhou, J.Y. Dai, H.S. Luo, X.P. Jiang, H.L.W. Chan, Inter. Ferroelectrics 141, 120–127 (2013)CrossRefGoogle Scholar
  34. 34.
    K. Thangavelu, R. Ramadurai, S. Asthana, AIP Adv. 4, 017111 (2014)CrossRefADSGoogle Scholar
  35. 35.
    I.G. Siny, E. Husson, J.M. Beny, S.G. Lushnikov et al., Ferroelectrics 248, 57 (2000)CrossRefGoogle Scholar
  36. 36.
    D. Rout, K.-S. Moon, S. Joong, L. Kang, I.W. Kim, J. Appl. Phys. 108, 084102 (2010)CrossRefADSGoogle Scholar
  37. 37.
    Z. Guowei, K. Youngsoo, L. Tianduo, X. Guiying, Sci. China Ser. B. Chem. 48, 210–215 (2005)CrossRefGoogle Scholar
  38. 38.
    L.H. Bac, L.T.H. Thanh, N.V. Chinh, N.T. Khoa, D.V. Thiet, T.V. Trung, D.D. Dung, Mater. Lett. 164, 631–635 (2016)CrossRefGoogle Scholar
  39. 39.
    J. Baedi, F. Mircholi, H.G. Moghadam, Optik 126, 1505–1509 (2015)CrossRefADSGoogle Scholar
  40. 40.
    J. Baedi, F. Mircholi, Optik 127, 1503–1506 (2016)CrossRefADSGoogle Scholar
  41. 41.
    D.L. Wood, J. Tauc, Phys. Rev. B 5, 3144 (1972)CrossRefADSGoogle Scholar
  42. 42.
    L.T.H. Thanh, N.H. Tuan, L.H. Bac, D.D. Dung, P.Q. Bao, Commun. Phys. 26, 51–57 (2016)CrossRefGoogle Scholar
  43. 43.
    N.H. Tuan, D.V. Thiet, D. Odkhuu, L.H. Bac, P.V. Binh, D.D. Dung, Phys B 532, 108–114 (2018)CrossRefADSGoogle Scholar
  44. 44.
    F. Yang, P. Wu, D.C. Sinclair, Solid State Ionics 299, 38–45 (2017)CrossRefGoogle Scholar
  45. 45.
    L. Ju, C. Shi, L. Sun, Y. Zhang, H. Qiu, J. Hu, J. Appl. Phys. 116, 083909 (2014)CrossRefADSGoogle Scholar
  46. 46.
    N.H. Tuan, N.H. Linh, D. Odkhuu, N.N. Trung, D.D. Dung, J. Electron. Mater. 47, 3414–3420 (2018)CrossRefADSGoogle Scholar
  47. 47.
    J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, M. Venkatesan, Appl. Phys. Lett. 84, 1332 (2004)CrossRefADSGoogle Scholar
  48. 48.
    N.H. Tuan, V.K. Anh, N.B. Doan, L.H. Bac, D.D. Dung, D. Odkhuu, J. Sol Gel Sci. Tech. 87, 528–536 (2018)CrossRefGoogle Scholar
  49. 49.
    Y. Qiao, W. Li, Y. Zhao, Y. Zhang, W. Cao, W. Fei, A.C.S. Appl, Energy Mater. 1, 956–962 (2018)Google Scholar
  50. 50.
    S. Wu, S. Wang, L. Chen, X. Wang, J. Mater. Sci. Mater. Electron. 19, 505–508 (2008)CrossRefGoogle Scholar
  51. 51.
    D.D. Dung, D. Odkhuu, L.T. Vinh, S.C. Hong, S. Cho, J. Appl. Phys. 114, 073906 (2013)CrossRefADSGoogle Scholar
  52. 52.
    D.D. Dung, D.V. Thiet, D.A. Tuan, S. Cho, J. Appl. Phys. 113, 17A314 (2013)CrossRefGoogle Scholar
  53. 53.
    W. Feng, D.D. Dung, J. Choi, Y. Shin, S. Cho, J. Appl. Phys. 107, 09E304 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of General Physics, School of Engineering PhysicsHa Noi University of Science and TechnologyHanoiVietnam
  2. 2.Department of Physics, Faculty of Basic SciencesViet Nam Maritime UniversityHaiphongVietnam
  3. 3.Department of PhysicsIncheon National UniversityIncheonRepublic of Korea

Personalised recommendations