Advertisement

Applied Physics A

, 125:270 | Cite as

Effect of film thickness on structural, morphological, and optical properties of Cu2ZnSnS4 thin films prepared by sol–gel spin coating

  • T. AtweeEmail author
  • A.-S. Gadallah
  • M. A. Salim
  • A. M. Ghander
Article

Abstract

Thin films of copper zinc tin sulfide (CZTS) have been synthesized on glass substrates at various thickness layers by change in number of layer from 3, 5 and 7 layers using sol–gel spin coating deposition technique. SEM photos were demonstrated for different thickness layer at constant temperature 280 °C. According the EDX analysis thin films exhibit nearly stoichiometry with 1.1 and (0.5–0.8) atomic ratio Cu/(Zn + Sn) and Cu/Zn, respectively. XRD pattern of the prepared CZTS films Show that the films have relatively high intensity peaks at 28.5° for 3 layer and 29.8° for 5 layers of 2θ value corresponding to (112), (220) and (312) phase, respectively. As the thickness layer of the synthesized CZTS films increases to 7 thickness layer, the film structure tends to be amorphous at the same temperature 280 °C, so the films were annealed to temperature 360 °C and 400 °C for a better crystallization state. The optical band gab is found in the range 1.5–1.8 eV and observed to decrease with thickness layer increasing. Additionally, the effect of the annealing temperature on the morphology and the energy gap for a film of 7 layer thicknesses at various temperatures from 280 to 400 °C was performed.

Notes

References

  1. 1.
    J. Jean, P.R. Brown, R.L. Jaffe, T. Buonassisi, V. Bulović, Energy Environ. Sci. 8, 1200–1219 (2015)CrossRefGoogle Scholar
  2. 2.
    K. Ramasamy, M.A. Malik, O’Brien. Chem. Commun. 48, 5703–5714 (2012)CrossRefGoogle Scholar
  3. 3.
    N. Kattana et al., Appl. Mater. Today 1, 52–59 (2015)CrossRefGoogle Scholar
  4. 4.
    Kee-Jeong Yang, Dae-Ho Son, Shi-Joon Sung, Jun-Hyoung Sim, Young-ILL Kim, Si-Nae Park, Dong-Hwan Jeon, JungSik Kim, Dae-Kue Hwang, Chan-Wook Jeon, Dahyun Nam, Hyeonsik Cheong, Jin-Kyu Kang, Dae-Hwan Kim, J. Mater. Chem. A 4, 10151–10158 (2016)CrossRefGoogle Scholar
  5. 5.
    C. Shi, G. Shi, Z. Chen, P. Yang, M. Yao, Mater. Lett. 73, 89–91 (2012)CrossRefGoogle Scholar
  6. 6.
    T.P. Dhakal, C.Y. Peng, R.R. Tobias, R. Dasharathy, C.R. Westgate, Sol. Energy 100, 23–30 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Q. Guo, G.M. Ford, W.C. Yang, B.C. Walker, E.A. Stach, H.W. Hillhouse, R. Agrawal, J. Am. Chem. Soc. 132, 17384–17386 (2010)CrossRefGoogle Scholar
  8. 8.
    W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Adv. Energy Mater. 4, 1301465 (2014)CrossRefGoogle Scholar
  9. 9.
    K. Tanaka et al., J. Alloy. Compd. 616, 492–497 (2014)CrossRefGoogle Scholar
  10. 10.
    S.A. Vanalakar et al., Ceram. Int. 40, 15097–15103 (2014)CrossRefGoogle Scholar
  11. 11.
    M.P. Suryawanshi et al., J. Alloy. Compd. 671, 509–516 (2016)CrossRefGoogle Scholar
  12. 12.
    F. Aslan, A. Tumbul, J. Alloy. Compd. 612, 1–4 (2014)CrossRefGoogle Scholar
  13. 13.
    J.C. Brinker, G.W. Scherer, Sol-gel science (Academic, New York, 1990), p. 9780080571034Google Scholar
  14. 14.
    A. Goktas, F. Aslan, A. Tumbul, J. Sol-Gel. Sci. Technol. 75, 45–53 (2015)CrossRefGoogle Scholar
  15. 15.
    D.-C. Nguyen et al., J. Alloys Compd. 632, 676–680 (2015)CrossRefGoogle Scholar
  16. 16.
    W. Li et al., J. Alloy. Compd. 632, 178–184 (2015)CrossRefGoogle Scholar
  17. 17.
    M.Y. Yeh, C.C. Lee, D.S. Wuu, J. Sol-Gel. Sci. Technol. 52, 65–68 (2009)CrossRefGoogle Scholar
  18. 18.
    T. Tanaka, A. Yoshida, D. Saiki, K. Saito, Q. Guo, M. Nishio, T. Yamaguchi, Thin Solid Films 518, 29–33 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    C.P. Björkman, J. Scragg, H. Flammersberger, T. Kubart, M. Edoff, Sol. Energy Mater. Sol. Cells 98, 110–117 (2012)CrossRefGoogle Scholar
  20. 20.
    W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitz, Adv. Energy Mater. 4, 1–5 (2014)CrossRefGoogle Scholar
  21. 21.
    W. Shockley, Solid-State Electron. 2, 35–60 (1961)ADSCrossRefGoogle Scholar
  22. 22.
    N.D. Sankir et al., Int. J. Renew. Energy Res. 2(3), 491–496 (2012)Google Scholar
  23. 23.
    S.S. Grabchikov, A.V. Trukhanov, S.V. Trukhanov, I.S. Kazakevich, A.A. Solobay, V.T. Erofeenko, N.A. Vasilenkov, O.S. Volkova, A. Shakin, J. Magn. Magn. Mater. 398, 49–53 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    T.I. Zubar, L.V. Panina, N.N. Kovaleva, S.A. Sharko, D.I. Tishkevich, D.A. Vinnik, S.A. Gudkova, E.L. Trukhanova, E.A. Trofimov, S.A. Chizhik, S.V. Trukhanov, A.V. Trukhanov, Cryst. Eng. Commun. 20, 2306–2315 (2018)CrossRefGoogle Scholar
  25. 25.
    A. Purohit et al., Opt. Mater. 47, 345–353 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    K. Lin et al., Adv. Powder Technol. 29, 1933–1939 (2018)CrossRefGoogle Scholar
  27. 27.
    Fatemeh Davara, Masoud Salavati-Niasari, J. Alloy. Compd. 509, 2487–2492 (2011)CrossRefGoogle Scholar
  28. 28.
    Masoud Salavati-Niasari, Fatemeh Davar, Masoud Farhadi, J. Sol-Gel. Sci. Technol. 5, 48–51 (2009)CrossRefGoogle Scholar
  29. 29.
    Masoud Salavati-Niasari, Masoud Farhadi-Khouzani, Fatemeh Davar, J. Sol-Gel. Sci. Technol. 52, 321–327 (2009)CrossRefGoogle Scholar
  30. 30.
    Noshin Mir, Masoud Salavati-Niasari, Mater. Res. Bull. 48, 1660–1667 (2013)CrossRefGoogle Scholar
  31. 31.
    A.-S. Gadallah, M.A. Salim, T. Atwee, A.M. Ghander, Optik 159, 275–282 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    J. Lungu, N. Stefan, G. Prodan, A. Mandes, Dig. J. Nanomater. Biostruct. 10, 967–976 (2015)Google Scholar
  33. 33.
    M. Rusu, Appl. Phys. A 66, 357–361 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    J. Rodriguez et al., Thin Solid Films 365, 119–125 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    M. Sirena, L. Steren, J. Guimpel, Thin Solid Films 373, 102–106 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    D.P. Padiyan et al., Mater. Chem. Phys. 78, 51–58 (2002)CrossRefGoogle Scholar
  37. 37.
    S. Lalitha et al., Sol. Energy Mater. Sol. Cells 82, 187–199 (2004)CrossRefGoogle Scholar
  38. 38.
    H.T. Kim, D. Kim, Mol. Cryst. Liq. Cryst. 564, 155–161 (2012)CrossRefGoogle Scholar
  39. 39.
    S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, V.G. Kostishyn, L.V. Panina, I.S. Kazakevich, A.M. Balagurov, J. Alloy. Compd. 689, 383–393 (2016)CrossRefGoogle Scholar
  40. 40.
    S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, A.M. Balagurov, J. Magn. Magn. Mater. 417, 130–136 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    P. Sherrer, Determination of the size and internal structure of colloidal particles using X rays. Nachr. Ges. Wiss. Goettingen 394, 98–100 (1918)Google Scholar
  42. 42.
    Sneha Samal, High-temperature oxidation of metals. Ch. 6, 101–121 (2016)Google Scholar
  43. 43.
    S.V. Trukhanov, I.O. Troyanchuk, A.V. Trukhanov, I.M. Fita, A.N. Vasilev, A. Maignan, H. Szymczak, JETP Lett. 83, 33–36 (2006)CrossRefGoogle Scholar
  44. 44.
    V.D. Doroshev, V.A. Borodin, V.I. Kamenev, A.S. Mazur, T.N. Tarasenko, A.I. Tovstolytkin, S.V. Trukhanov, J. Appl. Phys. 104, 093909–093913 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    S.V. Trukhanov, A.V. Trukhanov, H. Szymczak, C.E. Botez, A. Adair, J. Low Temp. Phys. 149, 185–199 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    V. Trukhanova, A.V. Trukhanova, A.N. Vasilievb, H. Szymczak, JEPT. 111, 209–214 (2010)Google Scholar
  47. 47.
    M.T.S. Nair, P.K. Zingaro, E.A. Meyers, J. Appl. Phys. 74, 1897–1984 (1993)CrossRefGoogle Scholar
  48. 48.
    D.P. Zachary, G. Henkelman, J. Chem. Phys. 134, 224706 (2011)CrossRefGoogle Scholar
  49. 49.
    J. Henry et al., J. Asian Ceramic Societies 4, 81–84 (2016)CrossRefGoogle Scholar
  50. 50.
    M.A. Yıldırım, Opt. Commun. 285, 1215–1220 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • T. Atwee
    • 1
    Email author
  • A.-S. Gadallah
    • 2
  • M. A. Salim
    • 1
  • A. M. Ghander
    • 1
  1. 1.Department of Physics, Faculty of ScienceDamietta UniversityDamiettaEgypt
  2. 2.Department of Laser Sciences and Interactions, National Institute of Laser Enhanced SciencesCairo UniversityGizaEgypt

Personalised recommendations