Applied Physics A

, 125:331 | Cite as

Six-band polarization-insensitive perfect metamaterial absorber using L-shaped resonators

  • Ai-Xia Wang
  • Shao-Bo QuEmail author
  • Ming-bao Yan
  • Wen-Jie Wang
  • Jia-fu Wang
  • Lin Zheng
  • Jing-li Wang


In this paper, we propose a perfect metamaterial absorber (PMA) composed of four groups of L-shaped resonators in the top layer, a dielectric spacer and a metallic back plate. Both simulation and experiment show that the PMA has six distinctive absorption peaks at 5.55 GHz, 6.51 GHz, 7.71 GHz, 9.45 GHz, 11.31 GHz and 13.11 GHz with high absorbance. The loss properties and field distributions are studied to demonstrate the absorption mechanism. This PMA is polarization insensitive over wide angles of incident waves for both transverse electric (TE) and transverse magnetic (TM) modes. Moreover, the absorption characteristics including the resonant frequency, the amplitude and the quality factor of the absorption peaks can be effectively tuned by changing the structural parameters, thus enabling potential applications such as stealth, spectrum identification and sensing.



This work is supported by the National Natural Science Foundation of China (Grant Nos. 61801509, 61771485, 61501502, and 61331005).


  1. 1.
    N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    R.X. Deng, M.L. Li, B. Muneer, Q. Zhu, Z.Y. Shi, L.X. Song, T. Zhang, Materials 11, 107 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    M.D. Banadaki, A.A. Heidari, IEEE Antennas Wireless. Propag. Lett. 17, 205–208 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    T. Liu, S.S. Kimn, Opt.Commun. 359, 372–377 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    J.F. Zhu, Z.F. Ma, W.J. Sun, F. Ding, Q. He, L. Zhou, Y.G. Ma, Appl. Phys. Lett. 105, 021102 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    X.J. He, S.T. Yan, Q.X. Ma, Q.F. Zhang, P. Jia, F.M. Wu, J.X. Jiang, Opt. Commun. 340, 44–49 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    M.M. Hasan, M.R.I. Faruque, M.T. Islam, Opt. Technol. Lett. 59, 2302–2307 (2017)CrossRefGoogle Scholar
  8. 8.
    X.F. Su, G.H. Li, H. Yang, Z.Y. Zhao, X.S. Chen, W. Lu, Plasmonics 13, 729–735 (2018)CrossRefGoogle Scholar
  9. 9.
    T.H. Meng, D.Hu,Q.F. Zhu, Opt. Commun. 415, 151–155 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    B.X. Wang, G.Z. Wang, Plasmonics 13, 123–130 (2018)CrossRefGoogle Scholar
  11. 11.
    B.X. Wang, G.Z. Wang, Mater. Lett. 180, 317–321 (2016)CrossRefGoogle Scholar
  12. 12.
    D. Hu, H.Y. Wang, Q.F. Zhu, IEEE Photon. J. 8, 5500608 (2016)Google Scholar
  13. 13.
    F.R. Hu, L. Wang, B.G. Quan, X.L. Xu, Z. Li, Z.A. Wu, X.C. Pan, J. Phys. D: Appl. Phys. 46, 195103 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    W.J. Wang, M.B. Yan, Y.Q. Pang, J.F. Wang, H. Ma, S.B. Qu, H.Y. Chen, C.L. Xu, M.D. Feng, Appl. Phys. A 118, 443–447 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    N. Mishra, K. Kumari, R.K. Chaudhary, Int. J. Microw. Wirel. T 10, 422–429 (2018)CrossRefGoogle Scholar
  16. 16.
    K. Kumari, N. Mishra, R.K. Chaudhary, Microw. Opt. Techn. Lett 59, 2664–2669 (2017)CrossRefGoogle Scholar
  17. 17.
    S. Kalraiya, R.K. Chaudhary, R.K. Gangwar, M.A. Abdalla, Mater. Res. Express 6, 055812 (2019)ADSCrossRefGoogle Scholar
  18. 18.
    H.Y. Zheng, X.R. Jin, J.W. Park, Y.H. Lu, J.Y. Rhee, W.H. Jang, H. Cheong, Y.P. Lee, Opt. Express 20, 24002–24009 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    P.V. Tuong, J.W. Park, J.Y. Rhee, K.W. Kim, W.H. Jang, H. Cheong, Y.P. Lee, Appl. Phys. Lett. 102, 081122 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    X.G. Zhao, K. Fan, J.D. Zhang, G.R. Keiser, G.W. Duan. R.D. Averitt, X. Zhang, Microsyst. Nanoeng 2, 16025 (2016)CrossRefGoogle Scholar
  21. 21.
    J.Y. Tang, Z.Y. Xiao, K.K. Xu, X.L. Ma, Z.H. Wang, Plasmonics 11, 1393–1399 (2016)CrossRefGoogle Scholar
  22. 22.
    R. Asghariana, B. Zakeria, O. Karimib, Int. J. Electron. Commun. (AEÜ) 87, 119–123 (2018)CrossRefGoogle Scholar
  23. 23.
    L.Y. Guo, X.H. Ma, Y.G. Zou, R.B. Zhang, J.A. Wang, D. Zhang, Opt. Laser. Tech. 98, 247–251 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    Y.J. Yoo, Y.J. Kim, T.P. Van, J.Y. Rhee, K.W. Kim, W.H. Jang, Y.H. Kim, H. Cheong, Y.P. Lee, Opt. Express 21, 32484–32490 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I.C. Khoo, S. Chen, T.J. Huang, Opt. Express 19, 15221–15228 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    J.Y. Rhee, Y.J. Yoo, K.W. Kim, Y.J. Kim, Y.P. Lee, J. Electromag.Waves Appl. 28, 1541–1580 (2014)CrossRefGoogle Scholar
  27. 27.
    P. Yu, L.V. Besteiro, Y.J. Huang, J. Wu, L. Fu, H.H. Tan, C. Jagadish, G.P. Wiederrecht, A.O. Govorov, Z.M. Wang, Adv. Optical Mater (2018) 1800995Google Scholar
  28. 28.
    X.Y. Peng, B. Wang, S.M. Lai, D.H. Zhang, J.H. Teng, Opt. Express 20, 27756 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    S. Shang, S. Yang, L. Tao, L. Yang, H. Cao, AIP Adv. 6, 075203 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    H.X. Xu, G.M. Wang, M.Q. Qi, J.G. Liang, J.Q. Gong, Z.M. Xu, Phys. Rev. B 86, 205104 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    M. Wu, X.G. Zhao, J.D. Zhang, J. Schalch, G.W. Duan, K. Cremin, R.D. Averitt, X. Zhang, Appl. Phys. Lett. 111, 051101 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    G.W. Duan, J. Schalchb, X.G. Zhao, J.D. Zhang, R.D. Averitt, X. Zhang, Sensor. Actuat. A 280, 303–308 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ai-Xia Wang
    • 1
  • Shao-Bo Qu
    • 1
    Email author
  • Ming-bao Yan
    • 1
  • Wen-Jie Wang
    • 1
  • Jia-fu Wang
    • 1
  • Lin Zheng
    • 1
  • Jing-li Wang
    • 1
  1. 1.Department of Basic SciencesAir Force Engineering UniversityXi’anChina

Personalised recommendations