Applied Physics A

, 125:265 | Cite as

New surface microstructure of mono-si wafer textured using wet chemical solutions for solar cell (revised paper (2))

  • Xiao Tong Gong
  • Shi Meng FengEmail author
  • Gang Lei
  • Meng Qi Shi


Mono-Si textured surface covered with pyramids has been widely used in the solar cell. However, there are few reports of new microstructures instead of pyramids on Mono Si surface. By adding the special additive, we change the anisotropic texturing properties of alkaline solutions to develop a new small tower over Mono Si surface. The surface was evaluated by scanning electron microscopy, minority carrier lifetime instrument and integral reflector. The results show that this new microstructure has the minority carrier lifetime of 9.72 µs, reflectivity of 10.12% within 400–1000 nm, respectively, which are better than that of solar cell based on pyramids structure. By comparing with samples covered with pyramids, it is considered that the new microstructures are suitable for the possible applications of silicon solar cells. In addition, we also found the non-linear relationship between minority carrier lifetime and the tower size.



  1. 1.
    H.A. Fashion, K.K. Adam, O.K. Oyewole, V.C. Anye, J. Asare, M.G. Zebaze, Kana, W.O. Soboyejo, Surface texture and optical properties of crystalline silicon substrates. J. Renew. Sustain. Energy 7, 063119 (2015)CrossRefGoogle Scholar
  2. 2.
    B. Vallejo, M. Gonzalez-Manasanas, J. Martinez-Lopez, On the texturization of monocrystalline silicon with sodium carbonate solutions. Sol. Energy 81(5), 565–569 (2007)CrossRefADSGoogle Scholar
  3. 3.
    P.K. Basu, D. Sarangi, K.D. Shetty, M.B. Boreland, Liquid silicate additive for alkaline texturing of mono-Si wafers to improve process bath lifetime and reduce IPA consumption. Sol Energy Mater Sol Cells 113, 37–43 (2013)CrossRefGoogle Scholar
  4. 4.
    A. Khanna, P.K. Basu, A. Filipovic, V. Shanmugam, C. Schmiga, A.G. Aberle et al., Influence of random pyramid surface texture on silver screen-printed contact formation for monocrystalline silicon wafer solar cells. Sol. Energy Mater. Sol. Cells 132, 589–596 (2015)CrossRefGoogle Scholar
  5. 5.
    X. Zhen, Y. Deren, et al. Texturization of monocrystalline silicon with triadic sodium phosphate. Sol. Energy Mater. Sol. Cells 77(3): 255–263 (2006)Google Scholar
  6. 6.
    K. Gangopadhydy, S.K. Kim, P. K.Basu, Low-cost texturization of large-area crystalline silicon solar cells using hydrazine mono-hydrate for industrial use. Renew. Energy 31, 1906–1915 (2006)CrossRefGoogle Scholar
  7. 7.
    P.K. Basu, H. Dhasmana, N. Udayakumar, F. Khan, D.K. Thakur, Regulated low cost pre-treatment step for surface texturization of large area industrial single crystalline silicon solar cell. Sol. Energy Mater. Sol. Cells 94, 1049–1054 (2010)CrossRefGoogle Scholar
  8. 8.
    Y. Nishimoto, K. Namba, Investigation of texturization for crystalline silicon solar cells with sodium carbonate solutions. Sol. Energy Mater. Sol. Cells 61(4), 393–402 (2000)CrossRefGoogle Scholar
  9. 9.
    M. Hasanuzzaman, M. Khairul, M. Hoq, Texturization of as-cut p-type monocrystalline silicon wafer using different wet chemical solutions. Appl. Phys. A 124, 415 (2018)CrossRefADSGoogle Scholar
  10. 10.
    P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J. Lelievre, A. Chaumartin, A. Fave, M. Lemiti, Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching. Sol. Energy Mater. Sol. Cells 90(15), 2319–2328 (2006)CrossRefGoogle Scholar
  11. 11.
    M. Rosa, M. Allegrezza, M. Canino, C. Summonte, A. Desalvo, TMAH-textured, a-Si/c-Si, heterojunction solar cells with 10% reflectance. Sol. Energy Mater. Sol. Cells 95, 2987–2993 (2011)Google Scholar
  12. 12.
    U. Gangopadhyay, K.H. Kim, S.K. Dhungel, U. Manna, P.K. Basu, M. Banerjee, H. Saha, Y. Junsin, A novel low cost texturization method for large area commercial mono-crystalline silicon solar cells. Solar Energy Mater. Solar Cells 90, 3557–3567 (2006)CrossRefGoogle Scholar
  13. 13.
    U. Gangopadhyay, K. Kim, S.K. Dhungel, P.K. Basu, J. Yi, Low-cost texturization of large-area crystalline silicon solar cells using hydrazine mono-hydrate for industrial use. Renew. Energy 31, 1906–1915 (2006)CrossRefGoogle Scholar
  14. 14.
    A. Montesdeoca-Santana, E. Jimenez-Rodriguez, B. Gonzalez-Diaz, Guerrero -Lemus, Ultra-low concentration Na2CO3/NaHCO3 solution for texturization of crystalline silicon solar cells. Prog. Photovoltaics Res. Appl. 20, 191–196 (2012)CrossRefGoogle Scholar
  15. 15.
    R.Barrio n, N. Gonza´ lez, J. Ca´ rabe, J.J. Gandı´a, Texturization of silicon wafers with Na2CO3 and Na2CO3/NaHCO3 solutions for heterojunction solar-cell applications. Mater. Sci. Semicond. Process. 16, 1–9 (2013)CrossRefGoogle Scholar
  16. 16.
    L. Sun, J. Tang, A new texturing technique of monocrystalline silicon surface with sodium hypochlorite. Appl. Surf. Sci. 255, 9301–9304 (2009)CrossRefADSGoogle Scholar
  17. 17.
    J. Lee, N. Lakshminarayan, S.K. Dhungel, K. Kim, J. Yi, Optimization of fabrication process of high efficiency and low cost crystalline silicon solar cell for industrial applications. Sol. Energy Mater. Sol. Cells 93, 256–261 (2009)CrossRefGoogle Scholar
  18. 18.
    A. Chu, J. Wang, Z. Tsai, C. Lee, A simple and cost-effective approach for fabricating pyramids on crystalline silicon wafers. Sol. Energy Mater.Sol.Cells 93(8), 1276–1280 (2009)CrossRefGoogle Scholar
  19. 19.
    Z. Dimitre, C.-H. Dimitrov, Du, Crystalline silicon solar cells with micro/nano texture. Appl. Surf. Sci. 266, (1–4) (2013)CrossRefADSGoogle Scholar
  20. 20.
    H. Erhan Kayabasi, E. Kurt, Celik, Determination of micro sized texturing and nano sized etching procedure to enhance optical properties of n-type single crystalline silicon wafer. J. Mater. Sci.: Mater. Electron. 28, 14085–14090 (2017)Google Scholar
  21. 21.
    C.L. Zhou, W.J. Wang, L. Zhao, H.L. Li, H.W. Diao, X.N. Cao, The effect of oxidation randomly textured up-pyramid on the silicon solar cell. Acta Physin Chin. 60(3), 038201–1 ~ 038201 (2011)Google Scholar
  22. 22.
    P.J. Cousins, J.E. Cotter, Minimizing lifetime degradation associated with thermal oxidation of upright randomly textured silicon surfaces. Solar Energy Mater. Solar Cells 90, 228–240 (2006)CrossRefGoogle Scholar
  23. 23.
    H. Park, J.S. Lee, S. Kwon, S. Yoon, D. Kim, Effect of surface morphology on screen printed solar cells, Curr. Appl. Phys. 10:113–118 (2010)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiao Tong Gong
    • 1
  • Shi Meng Feng
    • 1
    Email author
  • Gang Lei
    • 2
  • Meng Qi Shi
    • 2
  1. 1.School of Physics and AstronomyShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Shanghai Institute of Space Power and SourcesShanghaiPeople’s Republic of China

Personalised recommendations