Applied Physics A

, 125:256 | Cite as

Laser fluence dependence of ripple formation on fused silica by femtosecond laser irradiation

  • Xuesong ShiEmail author
  • Xuefeng Xu


Laser-induced periodic surface structures (LIPSS, ripples) have attracted great attentions in the fields of surfaces and interfaces, yet their origin still remains puzzling, especially for dielectrics. In this study, a comparative study of the formation of two distinct classes of ripples on fused silica is provided by carefully adjusting the key parameters of laser fluence and pulse number. Two different ablation regimes are identified for LIPSS formation. The threshold fluence of F = 4.07 J/cm2 is defined for the transition from high spatial frequency LIPSS to low spatial frequency LIPSS, which is independent of pulse number. Pulse-to-pulse results show the unique formation processes for each class of LIPSS in different fluence regimes. In the fluence range below the transition threshold (2.54 J/cm2 < F < 4.07 J/cm2), the formation of high spatial frequency LIPSS starts from randomly distributed nanogrooves perpendicularly orientated to E, indicating the excitation of surface-plasmon polaritons as a primary formation mechanism. In the higher fluence regime (F > 4.07 J/cm2), the development of a thin rim surrounding an ablation crater into straight ridges spreading across the crater is observed for the formation of low spatial frequency LIPSS, suggesting a thermal and fluid process involved in the LIPSS formation. The results show that laser fluence plays a key role in controlling the origin of ripples, while pulse number mainly contributes to the subsequent growth of microstructures.



This research is supported by the Fundamental Research Funds for the Central Universities (No. BLX201606) and National Natural Science Foundation of China (NSFC) (Grant Nos. 51575054 and 51875045).


  1. 1.
    J. Bonse, S. Höhm, S.V. Kirner, A. Rosenfeld, J. Krüger, Laser-induced periodic surface structures-a scientific evergreen. IEEE J. Sel. Top. Quant. 23, 9000615 (2017)CrossRefGoogle Scholar
  2. 2.
    Y. Shimotsuma, M. Sakakura, P.G. Kazansky, M. Beresna, J. Qiu, K. Miura, K. Hirao, Ultrafast manipulation of self-assembled form birefringence in glass. Adv. Mater. 22, 4039–4043 (2010)CrossRefGoogle Scholar
  3. 3.
    Y. Song, C. Wang, X. Dong, K. Yin, F. Zhang, Z. Xie, D. Chu, J. Duan, Controllable superhydrophobic aluminum surfaces with tunable adhesion fabricated by femtosecond laser. Opt. Laser Technol 102, 25–31 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, C. Fotakis, Tailoring the wetting response of silicon surfaces via fs laser structuring. Appl. Phys. A 93, 819–825 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    A.M. Kietzig, S.G. Hatzikiriakos, P. Englezos, Patterned superhydrophobic metallic surfaces. Langmuir 25, 4821–4827 (2009)CrossRefGoogle Scholar
  6. 6.
    J. Bonse, S. Höhm, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, A. Rosenfeld, J. Krüger, Tribological performance of sub-100-nm femtosecond laser-induced periodic surface structures on titanium. Appl. Sur. Sci. 374, 190–196 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    J. Reif, Surface Functionalization by Laser-Induced Structuring, in Advances in the Application of Lasers in Materials Science, ed. by P.M. Ossi (Springer, Cham, 2018), pp. 63–88CrossRefGoogle Scholar
  8. 8.
    D. Fattal, J. Li, Z. Peng, M. Fiorentino, R.G. Beausoleil, Flat dielectric grating reflectors with focusing abilities. Nat. Photon. 4, 466–470 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    K. Yin, Y.X. Song, X.R. Dong, C. Wang, J.A. Duan, Underwater superoleophobicity, anti-oil and ultra-broadbang enhanced absorption of metallic surfaces produced by a femtosecond laser inspired by fish and chameleons. Sci. Rep. 6, 36557 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, Femtosecond laser-induced periodic surface structures. J. Laser Appl. 24, 042006 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    X. Shi, L. Jiang, X. Li, K. Zhang, D. Yu, Y. Yu, Y. Lu, Temporal femtosecond pulse shaping dependence of laser-induced periodic surface structures in fused silica. J. Appl. Phys. 116, 033104 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    M. Ardron, N. Weston, D. Hand, A practical technique for the generation of highly uniform LIPSS. Appl. Surf. Sci. 313, 123–131 (2014)CrossRefGoogle Scholar
  13. 13.
    B. Ó¦ktem, I. Pavlov, S. Ilday, H. Kalaycioǧlu, A. Rybak, S. Yavas, M. Erdoǧan, F. Ilday, Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nat. Photon. 7, 897–901 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser. ACS Nano 3, 4062–4070 (2009)CrossRefGoogle Scholar
  15. 15.
    G. Seifert, M. Kaempee, F. Syrowatka, C. Harnagea, D. Hesse, H. Graener, Self-organized structure formation on the bottom of femtosecond laser ablation craters in glass. Appl. Phys. A 81, 799–803 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    A.B. Yakar, A. Harkin, J. Ashmore, R.L. Byer, H.A. Stone, Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses. J. Phys. D Appl. Phys. 40, 1447–1459 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    A. Rudenko, J.P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, T.E. Itina, Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin. Sci. Rep. 7, 12306 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    J. Reif, O. Varlamova, S. Varlamov, M. Bestehorn, The role of asymmetric excitation in self-organized nanostructure formation upon femtosecond laser ablation. Appl. Phys. A 104, 969–973 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    O. Varlamova, J. Reif, S. Varlamov, M. Bestehorn, Self-organized Surface Patterns Originating from Laser-Induced Instability, in Progress in Nonlinear Nano-Optics, ed. by S. Sakabe, C. Lienau, R. Grunwald (Springer, Berlin, 2015) pp. 3–29Google Scholar
  20. 20.
    P. Gregorčič, M. Sedlaček, B. Podgornik, J. Reif, Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations. Appl. Surf. Sci. 387, 698–706 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    J. Reif, F. Costache, M. Bestehorn, in Recent Advances in Laser Processing of Materials, ed. by J. Perriere, E. Millon, E. Fogarassy (Elsevier, Amsterdam, 2006), p. 275 (chapter 9) Google Scholar
  22. 22.
    X. Shi, L. Jiang, X. Li, S. Wang, Y. Yuan, Y. Lu, Femtosecond laser-induced periodic structure adjustments based on electron dynamics control: from subwavelength ripples to double-grating structures. Opt. Lett. 38, 3743–3746 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Yuan, L. Jiang, X. Li, C. Wang, H. Xiao, Y. Lu, H. Tsai, Formation mechanisms of sub-wavelength ripples during femtosecond laser pulse train processing of dielectrics. J. Phys. D Appl. Phys. 45, 175301 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    F. Liang, R. Vallée, S.L. Chin, Mechanism of nanograting formation on the surface of fused silica. Opt. Express 20, 4389–4396 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    S. Schwarz, S. Rung, R. Hellmann, One-dimensional low spatial frequency LIPSS with rotating orientation on fused silica. Appl. Sur. Sci. 411, 113–116 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    A. Hertwig, S. Martin, J. Krüger, W. Kautek, Surface damage and color centers generated by femtosecond pulses in borosilicate glass and silica. Appl. Phys. A 79, 1075–1077 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    S. Laville, F. Vidal, T.W. Johnston, M. Chaker, B.L. Drogoff, O. Barthélemy, J. Margot, M. Sabsabi, Modeling the time evolution of laser-induced plasmas for various pulse durations and fluences. Phys. Plasmas 11, 2182–2190 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    A.B. Yakar, R.L. Byer, A. Harkin, J. Ashmore, H.A. Stone, M. Shen, E. Mazur, Morphology of femtosecond-laser-ablated borosilicate glass surfaces. Appl. Phys. Lett. 83, 3030–3032 (2004)CrossRefGoogle Scholar
  29. 29.
    V.I. Emeľyanov, V.I. Konov, V.N. Tokarev, V.N. Seminogov, Formation of periodic surface ripples under the action of pulsed carbon dioxide laser radiation on fused silica. J. Opt. Soc. Am. B 6, 104–114 (1989)ADSCrossRefGoogle Scholar
  30. 30.
    H. Zheng, Y. He, J. Tan, D. Ding, Y. Liu, X. Yu, G. Zheng, X. Wang, X. Wang, Effect of polarization on efficiency of volume Bragg grating filter. Chin. Opt. Lett. 8, 738–740 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of TechnologyBeijing Forestry UniversityBeijingPeople’s Republic of China

Personalised recommendations