Advertisement

Applied Physics A

, 125:269 | Cite as

Integrated nanosecond laser full-field imaging for femtosecond laser-generated surface acoustic waves in metal film-glass substrate multilayer materials

  • Yannis Orphanos
  • Kyriaki Kosma
  • Evaggelos Kaselouris
  • Nikolaos Vainos
  • Vasilis Dimitriou
  • Makis Bakarezos
  • Michael Tatarakis
  • Nektarios A. PapadogiannisEmail author
Article
  • 102 Downloads

Abstract

Femtosecond laser pulses are used for the excitation of surface acoustic waves (SAWs) in a gold thin film transducer deposited on a glass substrate, while a single longitudinal nanosecond laser source is employed for their full-field, high-resolution dynamic interferometric imaging in a pump–probe experimental set-up. The successful combination of the two laser sources in one integrated pump–probe set-up, poses no restrictions in the time-delays. The experimental results are supported by numerical simulations implemented by the connection of a finite difference two-temperature model (TTM) with a finite element method (FEM) model. The new integrated method allows for the investigation of the dynamic response of matter for long timescale ranges. Representative applications for SAWs characterization and surface structural defects detection on Au thin metal film deposited on BK7 glass substrate samples, demonstrate the efficiency of the proposed method and the influence of the pulse duration of the excitation pulses.

Notes

Acknowledgements

We acknowledge the support of this work by the project “ELI-LASERLAB Europe Synergy, HiPER & IPERION-CH.gr” (MIS 5002735) which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the European Union (European Regional Development Fund).This work was supported by computational time granted from the Greek Research & Technology Network (GRNET) in the National HPC facility ARIS under project ID pr005024LaMIPlaS.

References

  1. 1.
    I.M. De la Torre, M.d.S. Hernández, J.M. Montes, F.M. Flores-Moreno, Santoyo, Laser speckle based digital optical methods in structural mechanics: a review. Opt. Lasers Eng. 87, 32–58 (2016)CrossRefGoogle Scholar
  2. 2.
    T. Požar, J. Laloš, A. Babnik, R. Petkovšek, M. Bethune-Waddell, K.J. Chau, G.V.B. Lukasievicz, N.G.C. Astrath, Isolated detection of elastic waves driven by the momentum of light. Nat. Commun. 9, 3340 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    A.A. Maznev, T.A. Kelf, M. Tomoda, O. Matsuda, O.B. Wright, Optical generation of surface acoustic waves guided at the linear boundary between two thin films. J. Appl. Phys. 107, 033521 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    S. Mezil, K. Chonan, P.H. Otsuka, M. Tomoda, O. Matsuda, S.H. Lee, O.B. Wright, Extraordinary transmission of gigahertz surface acoustic waves. Sci. Rep. 6, 33380 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    H.O. Paul, M. Sylvain, M. Osamu, T. Motonobu, A.M. Alexei, G. Tian, F. Nicholas, B. Nicholas, E.G. Vitalyi, B.W. Oliver, Time-domain imaging of gigahertz surface waves on an acoustic metamaterial. New J. Phys. 20, 013026 (2018)CrossRefGoogle Scholar
  6. 6.
    D.M. Profunser, E. Muramoto, O. Matsuda, O.B. Wright, U. Lang, Dynamic visualization of surface acoustic waves on a two-dimensional phononic crystal. Phys Rev. B 80, 014301 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    T. Tachizaki, T. Muroya, O. Matsuda, Y. Sugawara, D.H. Hurley, O.B. Wright, Scanning ultrafast Sagnac interferometry for imaging two-dimensional surface wave propagation. Rev. Sci. Instrum. 77, 043713 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    R.E. Green, Non-contact ultrasonic techniques. Ultrasonics 42, 9–16 (2004)CrossRefGoogle Scholar
  9. 9.
    R. Chona, C.S. Suh, G.A. Rabroker, Characterizing defects in multi-layer materials using guided ultrasonic waves. Opt. Lasers Eng. 40, 371–378 (2003)CrossRefGoogle Scholar
  10. 10.
    J.L. Blackshire, S. Sathish, Near-field ultrasonic scattering from surface-breaking cracks. Appl. Phys. Lett. 80, 3442–3444 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    J.L. Blackshire, S. Sathish, B.D. Duncan, M. Millard, Real-time, frequency-translated holographic visualization of surface acoustic wave interactions with surface-breaking defects. Opt. Lett. 27, 1025–1027 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    R.L. Jungerman, B.T. Khuri-Yakub, G.S. Kino, Characterization of surface defects using a pulsed acoustic laser probe. Appl. Phys. Lett. 44, 392–393 (1984)ADSCrossRefGoogle Scholar
  13. 13.
    D.V. Lioubtchenko, T.A. Briantseva, I.A. Markov, Surface acoustic wave monitoring of thin Au film deposition on GaAs surface. Mater. Phys. Mech. 12, 64–75 (2011)Google Scholar
  14. 14.
    H.P. Crutzen, F. Lakestani, J.R. Nicholls, SAW for the non destructive evaluation of thermal barrier coatings, 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No. 97CH36118), vol. 651 (1997), pp. 657–660Google Scholar
  15. 15.
    N. Bidin, R. Hossenian, M. Duralim, G. Krishnan, F.M. Marsin, W. Nughro, J. Zainal, Determination of hydrocarbon levels in water via laser-induced acoustics wave. Opt. Lasers Eng. 79, 61–67 (2016)CrossRefGoogle Scholar
  16. 16.
    R.J. Dewhurst, C. Edwards, A.D.W. McKie, S.B. Palmer, Estimation of the thickness of thin metal sheet using laser generated ultrasound. Appl. Phys. Lett. 51, 1066–1068 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    H. Hébert, F. Vidal, F. Martin, J.C. Kieffer, A. Nadeau, T.W. Johnston, A. Blouin, A. Moreau, J.P. Monchalin, Ultrasound generated by a femtosecond and a picosecond laser pulse near the ablation threshold. J. Appl. Phys. 98, 033104 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    A.A. Kolomenskii, H.A. Schuessler, Characterization of isotropic solids with nonlinear surface acoustic wave pulses. Phys. Rev. B 63, 085413-1–085413-6 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    D. Schneider, T. Witke, T. Schwarz, B. Schöneich, B. Schultrich, Testing ultra-thin films by laser-acoustics. Surf. Coat. Technol. 126, 136–141 (2000)CrossRefGoogle Scholar
  20. 20.
    C.B. Scruby, L.E. Drain, Laser ultrasonics techniques and applications. (CRC Press, Taylor & Francis Group, Boca Raton, 1990Google Scholar
  21. 21.
    S.J. Davies, C. Edwards, G.S. Taylor, S.B. Palmer, Laser-generated ultrasound: its properties, mechanisms and multifarious applications. J. Phys. D Appl. Phys. 26, 329 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    E. Tzianaki, M. Bakarezos, G.D. Tsibidis, Y. Orphanos, P.A. Loukakos, C. Kosmidis, P. Patsalas, M. Tatarakis, N.A. Papadogiannis, High acoustic strains in Si through ultrafast laser excitation of Ti thin-film transducers. Opt. Express 23, 17191–17204 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    E. Najafi, B. Liao, T. Scarborough, A. Zewail, Imaging surface acoustic wave dynamics in semiconducting polymers by scanning ultrafast electron microscopy. Ultramicroscopy 184, 46–50 (2018)CrossRefGoogle Scholar
  24. 24.
    Y. Orphanos, V. Dimitriou, E. Kaselouris, E. Bakarezos, N. Vainos, M. Tatarakis, N.A. Papadogiannis, An integrated method for material properties characterization based on pulsed laser generated surface acoustic waves. Microelectron. Eng. 112, 249–254 (2013)CrossRefGoogle Scholar
  25. 25.
    V. Dimitriou, E. Kaselouris, Y. Orphanos, M. Bakarezos, N. Vainos, M. Tatarakis, N.A. Papadogiannis, Three dimensional transient behavior of thin films surface under pulsed laser excitation. Appl. Phys. Lett. 103, 114104-1–114104-5 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    V. Dimitriou, E. Kaselouris, Y. Orphanos, M. Bakarezos, N. Vainos, I.K. Nikolos, M. Tatarakis, N.A. Papadogiannis, The thermo-mechanical behavior of thin metal films under nanosecond laser pulse excitation above the thermoelastic regime. Appl. Phys. A Mater. Sci. Process. 118, 739–748 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    E. Kaselouris, I.K. Nikolos, Y. Orphanos, E. Bakarezos, N.A. Papadogiannis, M. Tatarakis, V. Dimitriou, A review of simulation methods of laser matter interactions focused on nanosecond laser pulsed systems. J. Multiscale Model. 05, 1330001 (2013)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    S. Anisimov, B.L. Kapeliovich, T.L. Perelman, Electron emission from metal surfaces exposed to ultra-short laser pulses. Sov. Phys. JET 39, 375–377 (1974)ADSGoogle Scholar
  29. 29.
    N.A. Papadogiannis, P.A. Loukakos, S.D. Moustaizis, Observation of the inversion of second and third harmonic generation efficiencies on a gold surface in the femtosecond regime. Optics Commun. 166, 133–139 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    M.E. Povarnitsyn, N.E. Andreev, P.R. Levashov, K.V. Khishchenko, O.N. Rosmej, Dynamics of thin metal foils irradiated by moderate-contrast high-intensity laser beams. Phys. Plasmas 19, 023110-1–023110-8 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    S. Scharring, D. Förster, H.-A. Eckel, J. Roth, M. Povarnitsyn, Open access tools for the simulation of ultrashort-pulse laser ablation, 2014Google Scholar
  32. 32.
    M.E. Povarnitsyn, N.E. Andreev, E.M. Apfelbaum, T.E. Itina, K.V. Khishchenko, O.F. Kostenko, P.R. Levashov, M.E. Veysman, A wide-range model for simulation of pump-probe experiments with metals. Appl. Surf. Sci. 258, 9480–9483 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    M.E. Povarnitsyn, K.V. Khishchenko, P.R. Levashov, Phase transitions in femtosecond laser ablation. Appl. Surf. Sci. 255, 5120–5124 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    O.P. Shemyakin, P.R. Levashov, L.R. Obruchkova, K.V. Khishchenko, Thermal contribution to thermodynamic functions in the Thomas–Fermi model. J. Phys. A: Math. Theor. 43, 335003-1–335003-9 (2010)MathSciNetCrossRefGoogle Scholar
  35. 35.
    J.O. Hallquist, LS-Dyna Theory manual (Livermore Software Technology Corporation (LSTC), Livermore, 2006)Google Scholar
  36. 36.
    K. Nagayama, Introduction to the Grüneisen Equation of State and Shock Thermodynamics, 1. Amazon. com Inc, Seattle, (Kindle Edition)Google Scholar
  37. 37.
    E. Kaselouris, V. Dimitriou, I. Fitilis, A. Skoulakis, G. Koundourakis, E.L. Clark, J. Chatzakis, M. Bakarezos, I.K. Nikolos, N.A. Papadogiannis, M. Tatarakis, Preliminary investigation on the use of low current pulsed power Z-pinch plasma devices for the study of early stage plasma instabilities. Plasma Phys. Control. Fusion 60, 014031-1–014031-8 (2018)ADSCrossRefGoogle Scholar
  38. 38.
    G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21, 31–48 (1985)CrossRefGoogle Scholar
  39. 39.
    D. Steinberg, Equation of state and strength properties of selected materials (Lawrence Livermore National Laboratory, Livermore, 1996)Google Scholar
  40. 40.
    A.F.M. Arif, Effect of input variability on the quality of laser shock processing. J. Mech. Sci. Technol. 23, 2603 (2009)CrossRefGoogle Scholar
  41. 41.
    A.H. Clauer, J.H. Holbrook, B.P. Fairand, Effects of laser induced shock waves on metals, in Shock waves and high-strain-rate phenomena in metals: concepts and applications, ed. by M.A. Meyers, L.E. Murr (Springer US, Boston, MA, 1981), pp. 675–702CrossRefGoogle Scholar
  42. 42.
    Y. Sugawara, O.B. Wright, O. Matsuda, M. Takigahira, Y. Tanaka, S. Tamura, V.E. Gusev, Watching ripples on crystals. Phys. Rev. Lett. 88, 185504 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    S.-Y. Zhang, L. Guo, A. Hu, Q.-S. Gao, Z.-N. Lu, Temperature dependence of surface acoustic wave velocity in thin metal films. Thin Solid Films 202, 171–179 (1991)ADSCrossRefGoogle Scholar
  44. 44.
    F. Blanchard, F. Martin, J.C. Kieffer, F. Vidal, N. Perret, T.W. Johnston, A. Blouin, A. Moreau, J.P. Monchalin, M. Choquet, B.L. Fontaine, High frequency ultrasound generation using a femtosecond laser. AIP Conf. Proc. 657, 319–325 (2003)Google Scholar
  45. 45.
    M.E. Siemens, Q. Li, M.M. Murnane, H.C. Kapteyn, R. Yang, E.H. Anderson, K.A. Nelson, High-frequency surface acoustic wave propagation in nanostructures characterized by coherent extreme ultraviolet beams. Appl. Phys. Lett. 94, 093103 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    V.V. Kozhushko, P. Hess, Laser-induced focused ultrasound for nondestructive testing and evaluation. J. Appl. Phys. 103, 124902 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    A.A. Karabutov, E.V. Savateeva, N.B. Podymova, A.A. Oraevsky, Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer. J. Appl. Phys. 87, 2003–2014 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    B. Betz, W. Arnold, Frequency spectrum of laser-generated ultrasonic waves. J. Phys. Colloques 44, C6-61–C66-65 (1983)CrossRefGoogle Scholar
  49. 49.
    F. Enguehard, L. Bertrand, Effects of optical penetration and laser pulse duration on laser generated longitudinal acoustic waves. J. Appl. Phys. 82, 1532–1538 (1997)ADSCrossRefGoogle Scholar
  50. 50.
    D. Royer, M.-H. Noroy, M. Fink, Optical generation and detection of elastic waves in solids. J. Phys. IV France 04, C7-673-C677–684 (1994)CrossRefGoogle Scholar
  51. 51.
    I. Orfanos, Methodologies of dynamic nanoscopic material characterization using acoustic sources generated by ultrashort laser pulses, Department of Materials Science, School of Natural Sciences, University of Patras, (2015)Google Scholar
  52. 52.
    N.A. Papadogiannis, Ultrafast laser generated mechanical waves, physics and applications, 35th European Conference on Laser Interaction with Matter (ECLIM 2018) Rethymno, Greece, 2018Google Scholar
  53. 53.
    E. Kaselouris, E. Skarvelakis, I.K. Nikolos, G. Stavroulakis, Y. Orphanos, E. Bakarezos, N.A. Papadogiannis, M. Tatarakis, V. Dimitriou, A FEM study on the influence of the geometric characteristics of metallic films irradiated by nanosecond laser pulses, 8. (GRACM International Congress on Computational MechanicsVolos, Greece, 2015) thGoogle Scholar
  54. 54.
    E. Kaselouris, E. Skarvelakis, I.K. Nikolos, G.E. Stavroulakis, Y. Orphanos, E. Bakarezos, N.A. Papadogiannis, M. Tatarakis, V. Dimitriou Simulation of the transient behavior of matter with characteristic geometrical variations & defects irradiated by nanosecond laser pulses using FEA. Key Eng. Mater. 665, 157–160 (2016)Google Scholar
  55. 55.
    Q. Li, K. Hoogeboom-Pot, D. Nardi, M.M. Murnane, H.C. Kapteyn, M.E. Siemens, E.H. Anderson, O. Hellwig, E. Dobisz, B. Gurney, R. Yang, K.A. Nelson, Generation and control of ultrashort-wavelength two-dimensional surface acoustic waves at nanoscale interfaces. Physical Review B 85, 195431 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    X. Wang, X. Xu, Thermoelastic wave in metal induced by ultrafast laser pulses. J. Therm. Stresses 25, 457–473 (2002)CrossRefGoogle Scholar
  57. 57.
    A. Frass, P. Hess, Excitation of elastic surface pulses by fiber optics and near-field optical devices. J. Appl. Phys. 90, 5090–5096 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yannis Orphanos
    • 1
    • 2
  • Kyriaki Kosma
    • 1
    • 2
  • Evaggelos Kaselouris
    • 1
    • 3
  • Nikolaos Vainos
    • 4
  • Vasilis Dimitriou
    • 1
    • 5
  • Makis Bakarezos
    • 1
    • 2
  • Michael Tatarakis
    • 1
    • 3
  • Nektarios A. Papadogiannis
    • 1
    • 2
    Email author
  1. 1.Centre for Plasma Physics and Lasers - CPPL, School of Applied SciencesTechnological Educational Institute of CreteRethymnonGreece
  2. 2.Department of Music Technology and Acoustics Engineering, School of Applied SciencesTechnological Educational Institute of CreteRethymnonGreece
  3. 3.Department of Electronic Engineering, School of Applied SciencesTechnological Educational Institute of CreteChaniaGreece
  4. 4.Department of Materials ScienceUniversity of PatrasRioGreece
  5. 5.Department of Natural Resources and Environmental Engineering, School of Applied SciencesTechnological Educational Institute of CreteChaniaGreece

Personalised recommendations