Applied Physics A

, 125:252 | Cite as

Combined effects of Mg reducing and Sn doping on the electrical conductivity of polycrystalline Ca12Al14O33 mayenite

  • Chalermpol Rudradawong
  • Chesta RuttanapunEmail author


Polycrystalline Ca12Al14O33 was prepared by a solid state reaction method. All samples showed the phase of the Ca12Al14O33 by X-ray powder diffraction (XRD). The Mg heat treatment and Sn doping contributions dominated to increase the lattice constant a from 11.909(3) to 12.163(1) Å. Electron excitation energy of all samples were assigned by absorption spectra. The excitation energy between 2.68 and 2.79 eV was found after the Mg heat treatment. Electrical conductivity increased approximately 109 orders of magnitude at room temperature when experiencing Mg heat treatment for 10 h. The highest electrical conductivity obtained from the Ca12Al12.8Sn1.2O33/Mg(10) sample was 7.65 S cm− 1 at 573 K. The low activation energy for electrical conductivity was approximately 0.038 eV as a result of the Mg heat treatment. The influence of the Sn doping excellence supported the increase of the electrical conductivity with the Mg heat treatment process.



Author would like to thank the Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang (KMITL) for funding our research grant [grant number: 2562-01-05-50].


  1. 1.
    T. Yoshizumi, K. Hayashi, Thermionic electron emission from a mayenite electride-metallic titanium composite cathode. Appl. Phys. Express 6, 015802 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    M. al, Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis. Nat Commun 6, 6731 (2015)CrossRefGoogle Scholar
  3. 3.
    S. Jing, G. Lu, L.Q. Xin, Structure and antibacterial property of Na2O doped C12A7. Chin J Inorg Chem 27, 353–360 (2011)Google Scholar
  4. 4.
    K.Hayashi, P. V. Sushko, D. M.Ramo, A. L.Shluger, S.Watauchi, I.Tanaka, S.Matsuishi, M.Hirano, H. Hosono. Nanoporous crystal 12CaO⋅7Al2O3: a playground for studies of ultraviolet optical absorption of negative ions. J Phys Chem B. 2007, 111. 1946–1956.CrossRefGoogle Scholar
  5. 5.
    A. Schmidt et al, Chlorine ion mobility in Cl-mayenite (Ca12Al14O32Cl2): an investigation combining high-temperature neutron powder diffraction, impedance spectroscopy and quantum-chemical calculations. Solid State Ion 254, 48–58 (2014)CrossRefGoogle Scholar
  6. 6.
    J.P. Eufinger, A. Schmidt, M. Lerch, J. Janek. Novel anion conductors-conductivity thermodynamic stability and hydration of anion-substituted mayenite-type cage compounds C12A7:X (X = O, OH, Cl, F, CN, S, N). Phys. Chem. Chem. Phys. 17, 6844–6857 (2015).CrossRefGoogle Scholar
  7. 7.
    A.L.Shluger, K. P.McKenna, P. V.Sushko, D. M.Ramo, A.V. Kimmel. Modelling of electron and hole trapping in oxides. Model. Simul. Mater. Sci. Eng. 17, 084004 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    S.W. Kim, S. Matsuishi, T. Nomura, Y. Kubota, M. Takata, K. Hayashi, T. Kamiya, M. Hirano, H. Hosono. Metallic state in a lime-alumina compound with nanoporous structure. Nano Lett. 7, 1138–1143 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    J.H. Chung, J.H. Ryu, J.W. Eun, B.G. Choi, K.B. Shim, One-step synthesis of a 12CaO⋅7Al2O3 electride via the spark plasma sintering (SPS) method. Electrochem. Solid State Lett. 14, E41–E43 (2011)CrossRefGoogle Scholar
  10. 10. al. Electrical and optical properties of P-type CuFe1–xSnxO2 (x = 0.03, 0.05) delafossite-oxide. J. Appl. Phys. 113, 023103 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    C. Shang, R. Wu, J.K. Jian, Y.F. Sun. Structure and optical properties of Sn doped delafossite oxides CuGaO2 by hydrothermal method. Integr. Ferroelectr. 172, 80–86 (2016)CrossRefGoogle Scholar
  12. 12.
    J. Lan et al. High-temperature thermoelectric behaviors of fine-grained Gd-doped CaMnO3 ceramics. J. Am. Ceram. Soc. 93, 2121–2124 (2010).CrossRefGoogle Scholar
  13. 13.
    R. S. C. Bose, A.Nag. Effect of dual-doping on the thermoelectric transport properties of CaMn1–xNbx/2Tax/2O3. RSC Adv. 6, 52318–52325 (2016).CrossRefGoogle Scholar
  14. 14.
    M. I.Bertoni et al. Tunable conductivity and conduction mechanism in an ultraviolet light activated electronic conductor. J. Appl. Phys. 97, 103713 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    M. I.Bertoni et al. Enhanced electronic conductivity in Si-substituted calcium aluminate. J. Appl. Phys. 102, 113704 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    L.Palacios et al. Structure and electrons in mayenite electrides. Inorg. Chem. 47, 2661–2667 (2008).CrossRefGoogle Scholar
  17. 17.
    Md.T.Rahman, M.Vargas, C.V. Ramana. Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite.J Alloys Compd. 547–562 (2014).Google Scholar
  18. 18.
    P. U.Aparna, N. K.Divya, P. P.Pradyumnan. Structural and dielectric studies of Gd doped ZnO nanocrystals at room temperature. J. Chem. Eng. Mater. Sci. 4, 79–88 (2016).Google Scholar
  19. 19.
    K.Tanwar, F.Anjum, A. K.Shukla, T.Maiti. Role of structural distortion on thermoelectric aspects of heavily Sr2+ doped GdMnO3. J. Appl. Phys. 124, 094902 (2018).ADSCrossRefGoogle Scholar
  20. 20.
    K.Hayashi, S.Matsuishi, N.Ueda, M.Hirano, H.Hosono. Maximum incorporation of oxygen radicals, O and O2 into 12CaO⋅7Al2O3 with a nanoporous structure. Chem Mater. 15, 1851–1854 (2003).CrossRefGoogle Scholar
  21. 21.
    K. Kajihara, S. Matsuishi, K. Hayashi, M.Hirano, H. Hosono. Vibrational dynamics and oxygen diffusion in a nanoporous oxide ion conductor 12CaO⋅7Al2O3 studied by 18O labeling and micro-Raman spectroscopy. J Phys Chem C. 111, 14855–14861 (2007).CrossRefGoogle Scholar
  22. 22.
    Y. Dong, H. Hosono, K. Hayashi. Formation and quantification of peroxide anion in nanocage of 12CaO⋅7Al2O3. RSC Adv. 3, 18311–18316 (2013).CrossRefGoogle Scholar
  23. 23.
    H. Z.Guo, Z. H.Chen, B. L.Cheng, H. B.Lu, L. F.Liu, Y. L.Zhou. Structure dynamics of strongly reduced epitaxial BaTiO3–x studied by Raman scattering. J Eur Ceram Soc. 25, 2347–2352 (2005).CrossRefGoogle Scholar
  24. 24.
    S.Matsuishi et al. High-density electron anions in a nanoporous single crystal: [Ca24Al28O64]4+(4e). Science 301, 626–629 (2003).ADSCrossRefGoogle Scholar
  25. 25.
    A.B. Bogeat, M.A. Franco, C.F. González, J.S. González, V.G. Serrano. Temperature dependence of DC electrical conductivity of activated carbon–metal oxide nanocomposites. Some insight into conduction mechanisms. J. Phys. Chem. Solids 87, 259–270 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  2. 2.Smart Materials Research and Innovation Unit, Faculty of ScienceKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  3. 3.Thailand Center of Excellence in PhysicsCommission on Higher EducationBangkokThailand

Personalised recommendations