Applied Physics A

, 125:257 | Cite as

Studying of SiO2/capron nanocomposite as a gate dielectric film for improved threshold voltage

  • Ali BahariEmail author
  • Mahya Ghovati
  • Adeleh Hashemi


In this study, SiO2 gate dielectric operation was improved using SiO2/capron nanocomposite. SiO2/capron nanocomposite was synthesized by the sol–gel method. The existence of two phases in the nanocomposite structure was revealed using energy dispersive spectroscopy. The formation of hydrogen bonds among SiO2 nanofillers and capron matrix was proved by Fourier transform infrared spectroscopy and thermogravimetric analysis. The fact resulted in the uniform dispersion of SiO2 nanoparticles within capron matrix and the formation of cross-linked network. Pure SiO2, pure capron, SiO2/capron nanocomposite dissolved in benzene alcohol and SiO2/capron nanocomposite dissolved in acid formic as the gate dielectric films were deposited on the p-type Si substrates. Atomic force microscopy showed a significant decrease in the average surface roughness of nanocomposite film (0.02 nm) compared to that of pure SiO2 and pure capron films (18.3 and 7.85 nm, respectively). The operation of deposited films as the gate dielectrics was compared by the current–voltage (IV) measurements in the metal–insulator–semiconductor structure. Fabricated p-type Si field-effect-transistors demonstrated a great decrease in the leakage currents and the threshold voltages by decreasing the surface roughness of their dielectric films, because the charge transport is strongly associated with trap depth and carrier scattering effects in the semiconductor/dielectric interface. As a result, the threshold voltages were shifted toward downward and reached 1 V for transistor based on SiO2/capron nanocomposite dielectric film.



  1. 1.
    R.K. Srivastava, C.K. Nahar, W.P. Sarkar, Y. Sing, Malhotra, Microelectron. Reliab. 51, 751 (2011)CrossRefGoogle Scholar
  2. 2.
    A. Hashemi, S. Bahari, Ghasemi, Appl. Surf. Sci 416, 234 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    M. Bahari, Shahbazi, J. Electron. Mater. 45, 1201 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    A. Hashemi, S. Bahari, Ghasemi, J. Mater. Sci. 28, 13313 (2017)Google Scholar
  5. 5.
    H.-W. Lu, J.-G. Hwu, Appl. Phys. A 115, 837 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    T. Riberio, C. Baleizao, J. Paulo, S. Farinha, Materials 7, 3881 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    A.Z. Kattamis, R.J. Holmes, I.C. Cheng, K. Long, J.C. Sturm, S.R. Forrest, S. Wanger, IEEE Electron Dev. Lett. 27, 49 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    M. Shahbazi, A. Bahari, S. Ghasemi, Synth. Met. 221, 332 (2016)CrossRefGoogle Scholar
  9. 9.
    A. Hashemi, A. Bahari, Curr. Appl. Phys. 18, 1546 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    A.J. Bera, Pal, J. Phys. Chem. C 120, 19011 (2016)CrossRefGoogle Scholar
  11. 11.
    S.K. Saha, A. Bera, A.J. Pal, ACS Appl. Mater. Interfaces 7, 886 (2015)Google Scholar
  12. 12.
    T. Deyu, M. Liu, H. Sansiri, W. Wei, IEEE 2, 40 (2007)Google Scholar
  13. 13.
    A. Bahari, M. Roeinfard, A. Ramzannezhad, J. Mater. Sci. 27, 9363 (2016)Google Scholar
  14. 14.
    L. Zhen, W. Guan, L. Shang, M. Liu, G. Liu, J. Phys. D Appl. Phys 41, 1216 (2008)CrossRefGoogle Scholar
  15. 15.
    L.Q. Khor, K.Y. Cheong, J. Mater. Sci. 24, 2646 (2013)Google Scholar
  16. 16.
    J. Li, W. Shi, L. Shu, J. Yu, J. Mater. Sci. 26, 8601 (2015)Google Scholar
  17. 17.
    A. Hashemi, A. Bahari, Appl. Phys. A. 123, 535 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    B. Soltani, M. Babaeipour, A. Bahari, J. Mater. Sci. 28, 4378 (2017)Google Scholar
  19. 19.
    M. Bahari, B. Babaeipour, Soltani, J. Mater. Sci. 27, 2131 (2016)Google Scholar
  20. 20.
    A. Hashemi, S. Bahari, Ghasemi, J. Electron. Mater. 47, 3717 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    G. Rusu, E. Rusu, High Perform. Polym. 18, 355 (2006)CrossRefGoogle Scholar
  22. 22.
    C.-S. Wu, Des. Monom. Polym. 4, 311 (2007)CrossRefGoogle Scholar
  23. 23.
    Q. Xu, X. Li, F. Chen, Z. Zhang, J. Braz. Chem. Soc 25, 1218 (2014)Google Scholar
  24. 24.
    S. Pandis, M. Trujillo, J.L.G. Roganowicz, Ribelles, Macromol. Symp. 341, 34 (2014)CrossRefGoogle Scholar
  25. 25.
    L. Kabner, K. Nagel, R.-E. Grutzner, M. Korb, T. Ruffer, H. Lang, S. Spange, Polym. Chem 6, 6297 (2015)CrossRefGoogle Scholar
  26. 26.
    E.P. Bonilla, S. Trujillo, B. Demirdogen, J.E. Perilla, Y.M. Elcin, J.L.G. Ribelles, Mater. Sci. Eng. C 40, 418 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Shahbazi, A. Bahari, S. Ghasemi, Organ. Electron. 32, 100 (2016)CrossRefGoogle Scholar
  28. 28.
    A. Bahari, R. Gholipur, J. Mater. Sci. 24, 674 (2013)Google Scholar
  29. 29.
    K. Czarnobaj, Drug Deliv. 15, 485 (2008)CrossRefGoogle Scholar
  30. 30.
    R. Essien, O.A. Olaniyi, L.A. Adams, R.O. Shaibu, J. Miner. Mater 11, 976 (2012)Google Scholar
  31. 31.
    T.M.A. Ellateif, S. Maitra, Int. J. Nano Dimens. 8, 97 (2017)Google Scholar
  32. 32.
    M.D. Moraled-Acosta, C.G. Alvarado-Beitra, M.A. Quevedo-Lopez, B.E. Gnade, J. Non-Cryst. Solids 326, 124 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    L.C. Bandeira, K.J. Ciuffi, P.S. Calefi, E.J. Nassar, J.V.l. Silva, M. Oliveria, I.A. Maia, I.M. Salvado, M.H.V. Fernandes, J. Braz. Chem. Soc 23, 810 (2012)CrossRefGoogle Scholar
  34. 34.
    Q. Wu, X. Liu, L.A. Berglund, Polymer 43, 2445 (2002)CrossRefGoogle Scholar
  35. 35.
    S.J. Cooper, M. Coogan, N. Everall, I. Priestnall, Polymer 42, 10119 (2001)CrossRefGoogle Scholar
  36. 36.
    E. Kherroub, M. Belbachir, S. Lamouri, L. Bouhadar, K. Chikh, Orient. J. Chem. 29, 1429 (2013)CrossRefGoogle Scholar
  37. 37.
    G.-X. Chen, H.-S. Kim, B.H. Park, J.-S. Yoon, Polymer 47, 4760 (2006)CrossRefGoogle Scholar
  38. 38.
    M. Wei, W. Davis, B. Urban, Y. Song, F. Porbeni, X. Wang, J.L. White, C.M. Balik, C.C. Rusa, J. Fox. A. E. Tonell Macromol. 35, 8039 (2002)Google Scholar
  39. 39.
    Z. Xu, C. Gao, Macromolecules 43, 6716 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    L. Huang, E. Allen, A.E. Tonelli, Polymer 40, 3211 (1999)CrossRefGoogle Scholar
  41. 41.
    A. Oleinikova, I. Brovchenko, Phys. Chem. Lett. 2, 765 (2011)CrossRefGoogle Scholar
  42. 42.
    T. Xc, P. My, T. Ls, NCBI, 19, 484 (2002)Google Scholar
  43. 43.
    B.-R. Wu, T.H. Tasai, D.-S. Wuu, Appl. Surf. Sci. 354, 216 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    A. Srivastava, O. Mangla, R.K. Nahar, V. Gupta, C.K. Sarkar, J. Mater. Sci. 25, 3257 (2014)Google Scholar
  45. 45.
    D. Bharti, S.P. Tiwari, Synth. Mett. 215, 1 (2016)CrossRefGoogle Scholar
  46. 46.
    T.T. Dao, H. Murata, IEICE Trans. Electron E98-C, 422 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Solid State PhysicsUniversity of MazandaranBabolsarIran
  2. 2.Nanoelectronic Research Laboratory, Department of Physics, Faculty of Basic SciencesUniversity of MazandaranBabolsarIran

Personalised recommendations