Advertisement

Applied Physics A

, 125:310 | Cite as

Indium insertions in non-stoichiometric copper sulfides, CuxS, and their effect on the localized surface plasmon resonance of the nanocrystals

  • Christian BeynisEmail author
Article
  • 25 Downloads

Abstract

We monitor the stages of the copper indium sulfide growth to ‘counter-dope’ degenerate copper sulfides. We show through an easy and rapid synthesis that indium incorporation into non-stoichiometric copper sulfide (Roxbyite (Cu7S4)) results in its ‘counter-doping’. ‘Counter-doping’ is evidenced by the shift and damping of the LSPR of the resulting compound (Cu5InS4). Indeed, the XRD phases evidenced during the growth of copper indium sulfide starting a reaction with different precursors suggest that the copper indium sulfide growth can occur inside degenerate copper sulfide seeds. We explain the growth mechanism and show ’counter-doping’ with indium, starting the chemical reaction with Roxbyite (Cu7S4) precursors and indium species. The current body of the work is focused on the study of copper indium sulfide and the properties of the indium ratio; here, we use indium as a doping agent resulting for the first time in counter-doped copper sulfides. Despite being suggested in the eighties, doping of non-stoichiometric copper sulfide has never been achieved and could result in more stable chalcogenides with close to ideal band gap for solar cell applications.

Notes

Supplementary material

339_2019_2546_MOESM1_ESM.pdf (2.7 mb)
Supplementary material 1 (pdf 2806 KB)

References

  1. 1.
    L.R. Scudder, M.P. Godlewski, J.M. Bozek, T.M. Klucher, Shorting path mode of degradation in copper sulfide—cadmium sulfide thin-film solar cells, Nasa Technical Note (1971)Google Scholar
  2. 2.
    K. Okamoto, S. Kawai, Electrical conduction and phase transition of copper sulfides. Jpn. J. Appl. Phys. 12(8), 1130–1138 (1973)ADSCrossRefGoogle Scholar
  3. 3.
    I. Yokota, On the electrical conductivity of cuprous sulfide: A diffusion theory. Phys. Soc. Jpn. 8(5), 595–602 (1953)ADSCrossRefGoogle Scholar
  4. 4.
    L. Partain, R. Schneider, L. Donaghey, P. McLeod, Surface chemistry of cu x s and cu x s/cds determined from X-ray photoelectron spectroscopy. J. Appl. Phys. 57(11), 5056–5065 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    U. Tinter, H. Wiemhofer, Chemical diffusion coefficients of the low temperature phases of cuxse and cuxs—investigations with point electrodes. Solid State Ion. 9–10, 1213–1220 (1983)CrossRefGoogle Scholar
  6. 6.
    Q. Xu, B. Huang, Y. Zhuo, Y. Yan, R. Noufi, S.-H. Wei, Crystal and electronic structures of cuxs solar cell absorbers. Appl. Phys. Lett. 100, 061906 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    L. Brus, A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 79(11), 5566–5571 (1983)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Li, P. Miao, W. Zhou, X. Gong, X. Zhao, N-doped carbon-dots for luminescent solar concentrators. J. Mater. Chem. A 5(40), 21 452–21 459 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Zhu, Y. Li, P. Miao, W. Zhou, X. Gong, X. Zhao, Deep-red emitting zinc and aluminium co-doped copper indium sulfide quantum dots for luminescent solar concentrators. J. Colloid Interface Sci. 534, 509–517 (2019)ADSCrossRefGoogle Scholar
  10. 10.
    X. Wang, M.T. Swihart, Controlling the size, shape, phase, band gap, and localized surface plasmon resonance of cu2-xs and cuxinys nanocrystals. Chem. Mater. 27(5), 1786–1791 (2015).  https://doi.org/10.1021/cm504626u CrossRefGoogle Scholar
  11. 11.
    J.S. Niezgoda, E. Yap, J.D. Keene, J.R. McBride, S.J. Rosenthal, Plasmonic cuxinys2 quantum dots make better photovoltaics than their nonplasmonic counterparts. Nano Lett. 14(6), 3262–3269 (2014).  https://doi.org/10.1021/nl500645k ADSCrossRefGoogle Scholar
  12. 12.
    I. Kriegel, F. Scotognella, L. Manna, Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives. Phys. Rep. 674, 1–52 (2017)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    I. Kriegel, C. Jiang, J. Rodríguez-Fernández, R.D. Schaller, D.V. Talapin, E. da Como, J. Feldmann, Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals. J. Am. Chem. Soc. 134(3), 1583–1590 (2012).  https://doi.org/10.1021/ja207798q CrossRefGoogle Scholar
  14. 14.
    M. Kanehara, H. Arakawa, T. Honda, M. Saruyama, T. Teranishi, Large-scale synthesis of high-quality metal sulfide semiconductor quantum dots with tunable surface-plasmon resonance frequencies. Chem. Eur. J. 18, 9230–9238 (2012)CrossRefGoogle Scholar
  15. 15.
    Y. Jin, Q. Yi, Y. Ren, X. Wang, Z. Ye, Molecular mechanisms of monodisperse colloidal tin-doped indium oxide nanocrystals by a hot injection approach. Nanoscale Res. Lett. 8, 153 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Zhao, H. Pan, Y. Lou, X. Qiu, J. Zhu, C. Burda, Plasmonic cu2xs nanocrystals: Optical and structural properties of copper-deficient copper(i) sulfides. J. Am. Chem. Soc. 131(12), 4253–4261 (2009).  https://doi.org/10.1021/ja805655b CrossRefGoogle Scholar
  17. 17.
    M.M. Alvarez, J.T. Khoury, T.G. Schaaff, M.N. Shafigullin, I. Vezmar, R.L. Whetten, Optical absorption spectra of nanocrystal gold molecules. J. Phys. Chem. B 101(19), 3706–3712 (1997).  https://doi.org/10.1021/jp962922n CrossRefGoogle Scholar
  18. 18.
    J. Perez-Juste, I. Pastoriza-Santos, L.M. Liz-Marzan, P. Mulvaney, Gold nanorods: Synthesis, characterization and applications. Coord. Chem. Rev. 249(17–18), 1870–1901 (2005)CrossRefGoogle Scholar
  19. 19.
    P. Drude, Zur elektronentheorie der metalle. Ann. der Phys. 306, 566–613 (1900)ADSCrossRefGoogle Scholar
  20. 20.
    P. Drude, Zur Elektronentheorie der Metalle II. Teil. Galvanomagnetische und Thermomagnetische Effecte. Annalen Der Physik 308(11), 369–402 (1990)ADSCrossRefGoogle Scholar
  21. 21.
    I. Almog, M. Bradley, V. Bulovic, The lorentz oscillator and its applications (2011). http://ocw.mit.edu/terms (Online)
  22. 22.
    J. Kolny-Olesiak, Synthesis of copper sulphide-based hybrid nanostructures and their application in shape control of colloidal semiconductor nanocrystals. R. Soc. Chem. 16, 9381–9390 (2014)Google Scholar
  23. 23.
    W. van der Stam, S. Gudjonsdottir, W.H. Evers, A.J. Houtepen, Switching between plasmonic and fluorescent copper sulfide nanocrystals. J. Am. Chem. Soc. 139(37), 13 208–13 217 (2017).  https://doi.org/10.1021/jacs.7b07788 CrossRefGoogle Scholar
  24. 24.
    P. Kumar, M. Gusain, R. Nagarajan, Synthesis of cu1.8s and cus from copper-thiourea containing precursors; anionic (cl, no3, so42) influence on the product stoichiometry. Inorg. Chem. 50(7), 3065–3070 (2011).  https://doi.org/10.1021/ic102593h CrossRefGoogle Scholar
  25. 25.
    C. Coughlan, M. Ibáñez, O. Dobrozhan, A. Singh, A. Cabot, K.M. Ryan, Compound copper chalcogenide nanocrystals. Chem. Rev. 117(9), 5865–6109 (2017).  https://doi.org/10.1021/acs.chemrev.6b00376 CrossRefGoogle Scholar
  26. 26.
    J. Kolny-Olesiak, H. Weller, Synthesis and application of colloidal cuins2 semiconductor nanocrystals. ACS Appl. Mater. Interfaces 5(23), 12 221–12 237 (2013).  https://doi.org/10.1021/am404084d CrossRefGoogle Scholar
  27. 27.
    P. Rao, S. Kumar, N. Sahoo, Growth of copper indium sulphide films by thermal evaporation of mixtures of copper sulphide and indium sulphide powders. Mater. Res. Bull. 48, 2915–2921 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LaGuardia Community CollegeLong Island CityUSA

Personalised recommendations