Advertisement

Applied Physics A

, 125:222 | Cite as

First-principles study of mechanical, electronic properties and anisotropic deformation mechanisms of TiB under uniaxial compressions

  • Jun Li
  • Lisheng Liu
  • Shuang XuEmail author
  • Jinyong Zhang
  • Wuchang She
Article
  • 36 Downloads

Abstract

TiB is an excellent reinforcement in the titanium matrix, but its deformation mechanism is not clear and this limits the improvement of its performance. To uncover the deformation mechanism, first-principles methods based on density functional theory were carried out to study the mechanical, electronic properties and deformation behaviors of TiB under uniaxial compressions along different axis. The compressive strength along b-axis is the highest, because the B–B bond, which has the highest strength, is along b-axis. Meanwhile, strong anisotropy in TiB structure was observed. Under a-axis compression, the breakage of Ti1–Ti3 (Ti4–Ti2) bonds and the formation of Ti1–Ti4 (Ti3–Ti2) bonds are the main deformation mechanism. When the compression is along b-axis, the breakage of Ti1–B1 (Ti2–B2) bonds as well as the formation of Ti3–B3 (Ti4–B4) bonds cause the stress fluctuation without destroying the structure. Then, the reformation of Ti1–B1 (Ti2–B2) bonds causes the sudden drop in stress. Under c-axis compression, the breakage of the zig-zag B–B chains is the main reason for structural failure. Moreover, there still exists a pseudogap around the Fermi energy after structural failure in b-axis and c-axis compression, in contrast to a-axis compression. Thus, may be, the presence of pseudogap in TiB is originating from the Ti–Ti interaction.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51521001, 51502220, 11402183, and U1230107) and the Fundamental Research Funds for the Central Universities of China (WUT: 2017IA002, WUT:2017II07XZ, and WUT:2018-III-071GX).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    R.G. Munro, J. Res. Natl. Inst. Stand. Technol. 105, 709 (2000)CrossRefGoogle Scholar
  2. 2.
    S. Rou, K.S.R. Chandran, J. Am. Ceram. Soc. 101, 4308 (2018)CrossRefGoogle Scholar
  3. 3.
    K.B. Panda, K.S. Ravi Chandran, Comput. Mater. Sci. 35, 134 (2006)CrossRefGoogle Scholar
  4. 4.
    F. Huang, Z. Fu, A. Yan, W. Wang, H. Wang, J. Zhang, Q. Zhang, Powder Technol. 197, 83 (2010)CrossRefGoogle Scholar
  5. 5.
    M. Sun, C.-Y. Wang, J.-P. Liu, Chin. Phys. B 27, 077103 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    X. Zhang, X. Luo, J. Li, P. Hu, J. Han, Scr. Mater. 62, 625 (2010)CrossRefGoogle Scholar
  7. 7.
    T. Cheng, W. Li, J. Am. Ceram. Soc. 98, 190 (2015)CrossRefGoogle Scholar
  8. 8.
    H.Y. Yan, Q. Wei, S.M. Chang, P. Guo, Trans. Nonferrous Met. Soc. China (English Ed. 21, 1627 (2011)CrossRefGoogle Scholar
  9. 9.
    L. Sun, Y. Gao, B. Xiao, Y. Li, G. Wang, J. Alloys Compd. 579, 457 (2013)CrossRefGoogle Scholar
  10. 10.
    B. Mouffok, H. Feraoun, H. Aourag, Mater. Lett. 60, 1433 (2006)CrossRefGoogle Scholar
  11. 11.
    P. Vajeeston, P. Ravindran, C. Ravi, R. Asokamani, Phys. Rev. B Condens. Matter Mater. Phys. 63, 045115 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    W. Chun-Lei, Y. Ben-Hai, H. Hai-Liang, C. Dong, S. Hai-Bin, Chin. Phys. B 18, 1248 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    F. Peng, H.Z. Fu, X.L. Cheng, Phys. B Condens. Matter 400, 83 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    H. Xiang, Z. Feng, Z. Li, Y. Zhou, J. Appl. Phys. 117, 225902 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    M.L. Wang, Phys. Scr. 89, 115702 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    R. Zhang, D.J. Wang, S.J. Yuan, Mater. Des. 134, 250 (2017)CrossRefGoogle Scholar
  17. 17.
    V.V. Patel, A. El-Desouky, J.E. Garay, K. Morsi, Mater. Sci. Eng. A 507, 161 (2009)CrossRefGoogle Scholar
  18. 18.
    L. Xiao, W. Lu, J. Qin, D. Zhang, J. Mater. Res. 23, 3066 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    K.B. Panda, K.S.R. Chandran, Metall. Mater. Trans. A 34A, 1371 (2003)CrossRefGoogle Scholar
  20. 20.
    G. Cao, L. Geng, M. Naka, J. Am. Ceram. Soc. 89(12), 3836–3838 (2006)CrossRefGoogle Scholar
  21. 21.
    B. Huang, Y. Duan, W. Hu, Y. Sun, S. Chen, Ceram. Int. 41, 6831 (2015)CrossRefGoogle Scholar
  22. 22.
    K.B. Panda, K.S.R. Chandran, Acta Mater. 54, 1641 (2006)CrossRefGoogle Scholar
  23. 23.
    X. Xu, K. Fu, L. Li, Z. Lu, X. Zhang, Y. Fan, J. Lin, G. Liu, Phys. B 419, 105 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    D. Chen, Z. Chen, Y. Wu, M. Wang, N. Ma, H. Wang, Intermetallics 52, 64 (2014)CrossRefGoogle Scholar
  25. 25.
    J. Tian, Y. Zhao, B. Wang, H. Hou, Y. Zhang, Mater. Chem. Phys. 209, 200 (2018)CrossRefGoogle Scholar
  26. 26.
    B.F. Decker, J.S. Kasper, Acta Crystallogr. 7, 77 (1954)CrossRefGoogle Scholar
  27. 27.
    J. Hu, X. Dong, S. Tosto, J. Am. Ceram. Soc. 95, 2089 (2012)CrossRefGoogle Scholar
  28. 28.
    B.G. Yalcin, Appl. Phys. A Mater. Sci. Process. 122, 1 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    S. Tariq, M.I. Jamil, A. Sharif, S.M. Ramay, H. Ahmad, N. Qamar, B. Tahir, Appl. Phys. A Mater. Sci. Process. 124, 1 (2018)CrossRefGoogle Scholar
  30. 30.
    Y. Çiftci, M. Evecen, E. Aldırmaz, Appl. Phys. A Mater. Sci. Process. 123, 10 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    J. Li, S. Xu, J. Zhang, L. Liu, Q. Liu, W. She, Z. Fu, Chin. Phys. B 26, 047101 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    J. Li, S. Xu, L. Liu, Z. Wang, J. Zhang, Q. Liu, Mater. Res. Express 5, 55204 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)CrossRefGoogle Scholar
  34. 34.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    G. Kresse, Phys. Rev. B 59, 1758 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    J.D. Pack, H.J. Monkhorst, Phys. Rev. B 13, 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    D.F. Shanno, Math. Comput. 24, 647 (1970)CrossRefGoogle Scholar
  40. 40.
    G. Wang, Y. Li, Y. Gao, Y. Cheng, S. Ma, Comput. Mater. Sci. 104, 29 (2015)CrossRefGoogle Scholar
  41. 41.
    Q. An, W. Goddard, T. Cheng, Phys. Rev. Lett. 113, 1 (2014)Google Scholar
  42. 42.
    K. Momma, F. Izumi, J. Appl. Crystallogr. (International Union Crystallography IUCr) 44, 1272 (2011)Google Scholar
  43. 43.
    A.D. Becke, K.E. Edgecombe, J. Chem. Phys. 92, 5397 (1990)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hubei Key Laboratory of Theory and Application of Advanced Materials MechanicsWuhan University of TechnologyWuhanChina
  2. 2.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina
  3. 3.Institute of Advanced Material Manufacturing Equipment and TechnologyWuhan University of TechnologyWuhanChina

Personalised recommendations