Applied Physics A

, 125:220 | Cite as

Capacitively coupled plasma-stimulated room-temperature Mg and Mn doping and electrical activation in GaAs

  • Lei Li
  • Zang Zhihao
  • Nongnong Ma
  • Youqin He
  • Xiao Chen
  • Wanjin Xu
  • Yuan Fengpo
  • G. G. QinEmail author


In this paper, capacitively coupled plasma stimulated room-temperature Mg and Mn doping with self-bias around 1 kV and its rapid thermal annealing (RTA) electrical activation in semi-insulator GaAs samples are reported. Doping depths of Mg and Mn in the GaAs samples detected by secondary ion mass spectroscopy (SIMS) are tens of nm or so. After RTA at 740 °C and 900 °C for dozens of seconds, most Mn and Mg accepters are electrically activated. In both cases, densities of impurity atoms at the surfaces of the p-GaAs samples are around 10E20/cm3. The physical mechanism of this technique for doping shallow acceptors and RTA electrical activation are discussed.



This work is supported by the National Natural Science Foundation of China under grant numbers 11674004.


  1. 1.
    N.C. Anderson, Ion-implanted GaAs. Opt. Activ. Switch. III. 1873, 2–10 (1993)ADSGoogle Scholar
  2. 2.
    R.L. Kubena, C.L. Anderson, R.L. Seliger, R.A. Jullens, E.H. Stevens, I. Lagnado, FET fabrication using maskless ion implantation. J. Vac. Sci. Technol. 19(4), 916–920 (1981)ADSCrossRefGoogle Scholar
  3. 3.
    J.S. Williams, Ion implantation of semiconductors. Mater. Sci. Eng. A 253(1–2), 8–15 (1998)CrossRefGoogle Scholar
  4. 4.
    A. Shima, A. Hiraiwa, Ultra-shallow junction formation by non-melt laser spike annealing and its application to complementary metal oxide semiconductor devices in 65-nm node. Jpn. J. Appl. Phys. 45(7), 5708–5715 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    J.R. Conrad, J.L. Radtke, R.A. Dodd, F.J. Worzala, N.C. Tran, Plasma source ion-implantation technique for surface modification of materials. J. Appl. Phys. 62(11), 4591–4596 (1987)ADSCrossRefGoogle Scholar
  6. 6.
    N.W. Cheung, Plasma immersion ion implantation for ULSI processing. Nucl. Instrum. Methods. B 55(1–4), 811–820 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    N.W. Cheung, Plasma immersion ion implantation for semiconductor processing. Mater. Chem. Phys. 46, 132–139 (1996)CrossRefGoogle Scholar
  8. 8.
    J. Chen, J. Blanchard, J.R. Conrad, R.A. Dodd, Structure and wear properties of carbon implanted 304 stainless steel using plasma source ion implantation. Surf. Coat. Technol. 53(3), 267–274 (1992)CrossRefGoogle Scholar
  9. 9.
    T. Sheng, S.B. Felch, C.B. Cooper, Characteristics of a plasma doping system for semiconductor device fabrication, J. Vac. Sci. Technol. B 12(2) (1994)Google Scholar
  10. 10.
    M.J. Goeckner, S.B. Felch, Z. Fang, D. Lenoble, J. Galvier, A. Grouillet, G.C.F. Yeap, D. Bang, M.R. Lin, Plasma doping for shallow junctions, J. Vac. Sci. Technol. B 17 (5) (1999)Google Scholar
  11. 11.
    M. Chen, H. Nam, S. Wi, L. Ji, X. Ren, L. Bian, S. Lu, X. Liang, Stable few-layer MoS2 rectifying diodes formed by plasma-assisted doping. Appl. Phys. Lett. 103, 142110 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    N.A. Kumar, H. Nolan, N. McEvoy, E. Rezvani, R.L. Doyle, M.E.G. Lyons, G.S. Duesberg, Plasma-assisted simultaneous reduction and nitrogen doping of graphene oxide nanosheets, J. Mater. Chem. A 1 (14) (2013)Google Scholar
  13. 13.
    J.K. Lee, N.Y. Babaeva, H.C. Kim, O.V. Manuilenko, J.W. Shon, Simulation of capacitively coupled single- and dual-frequency RF discharges. IEEE. Trans. Plasma. Sci. 32(1), 47–53 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    J.R. Knight, Behaviour of magnesium impurity in gallium arsenide. Nature. 190, 999–1000 (1961)ADSCrossRefGoogle Scholar
  15. 15.
    T. Jungwirth, J. Sinova, J. Mašek, J. Kučera, A.H. MacDonald, Theory of ferromagnetic (III, Mn)V semiconductors. Rev. Mod. Phys. 78(3), 809–864 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    J.K. Furdyna, Diluted magnetic semiconductors. J. Appl. Phys. 64(4), R29–R64 (1988)ADSCrossRefGoogle Scholar
  17. 17.
    H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, Y. Iye, (Ga,Mn)As: a new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett. 69(3), 363–365 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    F. D’Orazio, F. Lucari, M. Passacantando, P. Picozzi, S. Santucci, A. Verna, Magnetooptical study of Mn ions implanted in Ge. IEEE. Trans. Magn. 38(5), 2856–2858 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    O.D.D. Couto, M.J.S.P. Brasil, F. Iikawa, C. Giles, C. Adriano, J.R.R. Bortoleto, M.A.A. Pudenzi, H.R. Gutierrez, I. Danilov, Ferromagnetic nanoclusters formed by Mn implantation in GaAs, Appl. Phys. Lett. 86 (7), 071906 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    C. Chen, M. Cai, X. Wang, S. Xu, M. Zhang, X. Ding, Y. Sun, Ferromagnetic properties and structures of the Mn-implanted GaAs semiconductor. J. Appl. Phys. 87(9), 5636–5638 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    R. Hou, Z. Xie, L. Li, X. Xie, X. Xu, X. Fang, L. Tao, W. Xu, N. Ma, Y. He, X. Chen, S. Peng, E. Fu, Z. Yuan, G. Qin, Room-temperature plasma doping without bias power for introduction of Fe, Au, Al, Ga, Sn and In into Si, Appl. Phys. A 122(12), 1013 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    R. Hou, X. Fang, L. Li, S. Li, W. Song, X. Xie, Z. Xie, W. Xu, S. Pan, D. Li, C. Xiao, G.G. Qin, Doping Si, Mg and Ca into GaN based on plasma stimulated room-temperature diffusion, Appl. Phys. A 123 (6), 393 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    R. Hou, L. Li, X. Fang, H. Zhao, Y. Chen, Z. Xie, G. Sun, X. Zhang, Y. Zhao, R. Huang, Z. Huang, Y. He, N. Ma, J. Zhang, W. Xu, J. Yang, C. Xiao, G.G. Qin, U.-S. Doping, B, Mg, Ni, Cu, Mn, Cr and Fe into SiC with very high surface concentrations based on plasma stimulated room-temperature diffusion. J. Mater. Eng. Perform. 28(1), 162–168 (2018)CrossRefGoogle Scholar
  24. 24.
    G.K. Celler, D.L. Barr, J.M. Rosamilia, Etching of silicon by the RCA standard clean 1. Eletrochem. Solid. State. Lett. 3(1), 47–49 (2000)CrossRefGoogle Scholar
  25. 25.
    M. Feng, S.P. Kwok, V. Eu, B.W. Henderson, Study of electrical and chemical profiles of Si implanted in semi-insulating GaAs substrate annealed under SiO2 and capless. J. Appl. Phys. 52(4), 2990–2993 (1981)ADSCrossRefGoogle Scholar
  26. 26.
    S.J. Xu, X.C. Wang, S.J. Chua, C.H. Wang, W.J. Fan, J. Jiang, X.G. Xie, Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots. Appl. Phys. Lett. 72(25), 3335–3337 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    L.J. Van der Pauw, A method of measuring specific resistivity and Hall Effect of discs of arbitrary shape, Philips. Res. Rep. 13 (1–9) (1958)Google Scholar
  28. 28.
    S.B. Zhang, J.E. Northrup, Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diffusion. Phys. Rev. Lett. 67(17), 2339–2342 (1991)ADSCrossRefGoogle Scholar
  29. 29.
    H.J. Yun, T.H. Kim, C.B. Shin, C.-K. Kim, J.-H. Min, S.H. Moon, Comparison of atomic scale etching of poly-Si in inductively coupled Ar and He plasmas. Korean. J. Chem. Eng. 24(4), 670–673 (2007)CrossRefGoogle Scholar
  30. 30.
    U. Gösele, F. Morehead, Diffusion of zinc in gallium arsenide: a new model. J. Appl. Phys. 52(7), 4617–4619 (1981)ADSCrossRefGoogle Scholar
  31. 31.
    S. Yu, T.Y. Tan, U. Gösele, Diffusion mechanism of chromium in GaAs. J. Appl. Phys. 70(9), 4827–4836 (1991)ADSCrossRefGoogle Scholar
  32. 32.
    B. Chen, Q.M. Zhang, J. Bernholc, Si diffusion in GaAs and Si-induced interdiffusion in GaAs/AlAs superlattices. Phys. Rev. B 49(4), 2985–2988 (1994)ADSCrossRefGoogle Scholar
  33. 33.
    G.A. Baraff, M. Schluter, Electronic structure, total energies, and abundances of the elementary point defects in GaAs. Phys. Rev. Lett. 55(12), 1327–1330 (1985)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Lab for Mesoscopic Physics, School of PhysicsPeking UniversityBeijingPeople’s Republic of China
  2. 2.China Electronics Technology Group Corporation No. 46 Research InstituteTianjinPeople’s Republic of China
  3. 3.The 13th Research Institute of China Electronics Technology Group CorporationShijiazhuangPeople’s Republic of China
  4. 4.Collaborative Innovation Center of Extreme OpticsShanxi UniversityTaiyuanPeople’s Republic of China

Personalised recommendations