Advertisement

Applied Physics A

, 125:323 | Cite as

Manganese films grown on TiO2 nanotubes by photodeposition, electrodeposition and photoelectrodeposition: preparation and photoelectrochemical properties

  • Y. GhayebEmail author
  • M. M. Momeni
  • E. Ghonjalipoor
Article
  • 19 Downloads

Abstract

Manganese deposition on the surface of TiO2 nanotubes by three methods; namely, photodeposition, electrodeposition, and photoelectrodeposition, has been carried out to enhance the photoelectrochemical water-splitting efficiency of these samples for H2 production. TiO2 nanotubes have been synthesized via anodic oxidation of pure titanium. FE-SEM, XRD, Raman, and UV–visible spectroscopy have been used to characterize the morphology, structure, and optical properties of the samples prepared. Samples L-0.9 and L-0.7, prepared by photoelectrodeposition at high potential, were shown to perform better than those prepared by electrodeposition or photodeposition, based on the photoelectrochemical studies.

Notes

References

  1. 1.
    R. Singh, S. Dutta, A review on H2 production through photocatalytic reactions using TiO2/TiO2-assisted catalysts. Fuel. 220, 607–620 (2018)CrossRefGoogle Scholar
  2. 2.
    J. Joy, J. Mathew, S.C. George, Nanomaterials for photoelectrochemical water splitting-review. Int. J. Hydrogen Energy 43, 4804–4817 (2018)CrossRefGoogle Scholar
  3. 3.
    T. Zhang, M.D. Amiridis, Hydrogen production via the direct cracking of methane over silica-supported nickel catalysts. Appl. Catal. A 167, 161–172 (1998)CrossRefGoogle Scholar
  4. 4.
    H. Ghaebi, M. Yari, S. Ghavami Gargari, H. Rostamzadeh, Thermodynamic modeling and optimization of a combined biogas steam reforming system and organic Rankine cycle for coproduction of power and hydrogen. Renew Energy 130, 87–102 (2019)CrossRefGoogle Scholar
  5. 5.
    Y. Qian, J. Du, D.J. Kang, Enhanced electrochemical performance of porous Co-doped TiO2 nanomaterials prepared by a solvothermal method. Microporous Mesoporous Mater. 273, 148–155 (2019)CrossRefGoogle Scholar
  6. 6.
    A.E. Shalan, M.M. Rashed, Y. Youhai, L.C. Monica, M.S.A. Abdel-Mottaleb, Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells. Electrochim. Acta 89, 469–478 (2013)CrossRefGoogle Scholar
  7. 7.
    R. Endo, H.D. Siriwardena, A. Kondo, C. Yamamoto, M. Shimomura, Structural and chemical analysis of TiO2 nanotube surface for dye-sensitized solar cells. Appl. Surf. Sci. 439, 954–962 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    M.M. Momeni, Y. Ghayeb, A. Hallaj, R. Bagheri, Z. Songd, H. Farrokhpour, Effects of platinum photodeposition time on the photoelectrochemical properties of Fe2O3 nanotube electrodes. Mater. Lett. 237, 188–192 (2019)CrossRefGoogle Scholar
  9. 9.
    P. Roy, B. Steffen, P. Schmuki, TiO2 nanotubes: synthesis and applications. Angew. Chem. 50, 2904–2939 (2011)CrossRefGoogle Scholar
  10. 10.
    M.M. Momeni, M. Mahvari, Y. Ghayeb, Photoelectrochemical properties of iron-cobalt WTiO2 nanotube photoanodes for water splitting and photocathodic protection of stainless steel. J. Electroanal. Chem. 832, 7–23 (2019)CrossRefGoogle Scholar
  11. 11.
    M.G. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. C. 90(14), 2011–2075 (2006)CrossRefGoogle Scholar
  12. 12.
    B.D. Yao, Y.F. Chan, X.Y. Zhang, W.F. Zhang, Z.Y. Yang, N. Wang, Formation mechanism of TiO2 nanotubes. Appl. Phys. Lett. 82, 281–283 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    H. Shin, D.K. Jeong, J. Lee, M.M. Sung, J. Kim, Formation of TiO2 and ZrO2 nanotubes using atomic layer deposition with ultraprecise control of the wall thickness. Adv. Mater. 16, 1197–1200 (2004)CrossRefGoogle Scholar
  14. 14.
    J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, TiO2 nanotubes: self-organized electrochemical formation, properties and applications, Curr. Opin. Solid. State Mater. 11, 3–18 (2007)CrossRefGoogle Scholar
  15. 15.
    M.M. Momeni, Y. Ghayeb, F. Ezati, Fabrication, characterization and photoelectrochemical activity of tungsten-copper co-sensitized TiO2 nanotube composite photoanodes. J. Colloid Interface Sci. 514, 70–82 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    S.S. Gujral, A.N. Simonov, X.Y. Fang, M. Higashi, T. Gengenbach, R. Abe, L. Spiccia, Photo-assisted electrodeposition of manganese oxide on TaON anodes: effect on water photooxidation capacity under visible light irradiation. Catal. Sci. Technol. 6, 3745–3757 (2016)CrossRefGoogle Scholar
  17. 17.
    I.V. Baklanova, V.N. Krasilnikov, O.I. Gyrdasova, L.Y. Buldakova, Synthesis and optical and photocatalytic properties of manganese-doped titanium oxide with a three-dimensional architecture of particles. Mendeleev Commun. 26, 335–337 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Seong, S. Kim, H. Yoo, J. Choi, Doping of anodic nanotubular TiO2 electrodes with MnO2 for use as catalysts in water oxidation. Catal. Today 260, 135–139 (2016)CrossRefGoogle Scholar
  19. 19.
    L. Zhang, D. He, P. Jiang, MnO2-doped anatase TiO2-An excellent photocatalyst for degradation of organic contaminants in aqueous solution. Catal. Commun. 10, 1414–1416 (2009)CrossRefGoogle Scholar
  20. 20.
    M.M. Momeni, A.A. Mozafari, The effect of number of SILAR cycles on morphological, optical and photo catalytic properties of cadmium sulfide-titania films. J. Mater. Sci. Mater Electron. 27, 10658–10666 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryIsfahan University of TechnologyIsfahanIran

Personalised recommendations