Advertisement

Applied Physics A

, 125:218 | Cite as

Effect of copper concentration on physical properties of CZTS thin films deposited by dip-coating technique

  • Ahmed ZitiEmail author
  • Bouchaib Hartiti
  • Hicham Labrim
  • Salah Fadili
  • Hervé Joël Tchognia Nkuissi
  • Abderraouf Ridah
  • Mounia Tahri
  • Philippe Thevenin
Article
  • 63 Downloads

Abstract

Cu2ZnSnS4 (CZTS) thin films have been prepared via sol–gel method and deposited on ordinary glass substrates by dip-coating technique. The chemical composition of Cu/(Zn + Sn) ratio was varied between 0.85, 0.95 and 1.05 to study its effect on structural, optical, morphological, compositional and electrical properties of deposited films. The films were investigated using different techniques such as X-ray diffractometer (XRD), Raman spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), UV–vis spectrophotometer and four-point probe method. The X-ray diffraction showed the single kesterite phase with the preferential orientation along (112) plane. The crystallites size was found to be between 6.95 and 9.30 nm. Raman scattering measurements for CZTS films deposited at Cu/(Zn + Sn) equal to 0.85 and 1.05 were confirmed the presence of pure CZTS phase by the characteristic peak at 332 cm−1. The morphological properties show a dense surface morphology and the elemental composition indicates CZTS films with a near-stoichoimetric composition. The optical properties were calculated using transmittance and absorbance data in the wavelength range between 450 and 850 nm. The obtained band gap energy values were found to be between 1.41 and 1.47 eV. The electrical sheet resistance showed values between 0.68 and 1.07 × 103 Ω square−1. A best sheet resistance and favorable optical band gap make our dip-coated CZTS thin films suitable to be used as an absorber layer for photovoltaic applications.

Notes

Acknowledgements

Prof. Bouchaib HARTITI, Senior Associate at ICTP (The Abdus Salam International Centre for Theoretical Physics) is very grateful to ICTP for financial support. Technical support from LMOPS (University of Lorraine, France) and Kamal ABDERRAFI is also acknowledged.

References

  1. 1.
    P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, Appl. 19, 894–897 (2011)Google Scholar
  2. 2.
    M. Ganchev, L. Kaupmees, J. Iliyna, J. Raudoja, O. Volobujeva, H. Dikov, M. Altosaar, E. Mellikov, T. Varema, Energy Proc. 2, 65–70 (2010)CrossRefGoogle Scholar
  3. 3.
    A. Walsh, S. Chen, S.-H. Wei, X.-G. Gong, Adv. Energy Mater. 2, 400–409 (2012)CrossRefGoogle Scholar
  4. 4.
    C. Wadia, A.P. Alivisatos, D.M. Kammen, Environ. Sci. Technol. 43, 2072 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    D.B. Mitzi, L.L. Kosbar, C.E. Murray, M. Copel, A. Afzali, Nature 428, 299 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    D.B. Mitzi, M. Yuan, W. Liu, A.J. Kellock, S.J. Chey, V. Deline, A.G. Schrott, Adv. Mater. 20, 3657 (2008)CrossRefGoogle Scholar
  7. 7.
    H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Sol. Energy Mater. Sol. Cells 49, 407–414 (1997)CrossRefGoogle Scholar
  8. 8.
    T. Kobayashi, K. Jimbo, K. Tsuchida, S. Shinoda, T. Oyanagi, H. Katagiri, Jpn. J. Appl. Phys. 44, 783–787 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    H. Katagiri, Cu2ZnSnS4 thin film solar cells. Thin Solid Films 480–481, 426–432 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, T. Motohiro, Appl. Phys. Express 1(2), 041201 (2008) (2pp)ADSCrossRefGoogle Scholar
  11. 11.
    H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, Thin Solid Films 517, 2455–2460 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    T.K. Todorov, K.B. Reuter, D.B. Mitzi, Adv. Mater. 22, 156 (2010)CrossRefGoogle Scholar
  13. 13.
    K. Tanaka, M. Oonuki, N. Moritake, H. Uchiki, Sol. Energy Mater. Sol. Cells 93, 583 (2009)CrossRefGoogle Scholar
  14. 14.
    Z. Zhou, Y. Wang, D. Xu, Y. Zhang, Sol. Energy Mater. Sol. Cells 94, 2042 (2010)CrossRefGoogle Scholar
  15. 15.
    K. Tanaka, N. Moritake, H. Uchiki, Sol. Energy Mater. Sol. Cells 91, 1199 (2007)CrossRefGoogle Scholar
  16. 16.
    Y. Miyamoto, K. Tanaka, M. Oonuki, N. Moritake, H. Uchiki, Jpn. J. Appl. Phys. 1, 596 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    T.K. Todorov, M. Kita, J. Carda, P. Escribano, Thin Solid Films 517, 2541 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    N. Moritake, Y. Fukui, M. Oonuki, K. Tanaka, H. Uchiki, Phys. Status Solidi (c) 6, 1233 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    K. Tanaka, K. Moritake, M. Oonuki, H. Uchiki, Jpn. J. Appl. Phys. 47, 598 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    H.J. Tchognia Nkuissi, B. Hartiti, Micro and Nano Technologies, chap. 44 (Elsevier, 2018), pp. 799–828Google Scholar
  21. 21.
    K. Todorov, K.B. Reuter, D.B. Mitzi, Adv. Mater. 22(20), E156–E159 (2010)CrossRefGoogle Scholar
  22. 22.
    D.A.R. Barkhouse, O. Gunawan, T. Gokmen, T.K. Todorov, D.B. Mitzi, Prog. Photovolt. Res. Appl. 20, 6–11 (2012)CrossRefGoogle Scholar
  23. 23.
    T.K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, D.B. Mitzi, Adv. Energy Mater. 3, 34–38 (2013)CrossRefGoogle Scholar
  24. 24.
    W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Adv. Energy Mater. 4, 1–5 (2014)CrossRefGoogle Scholar
  25. 25.
    P. Prabeesh, P. Saritha, I. Packia Selvam, S.N. Potty, Mater. Res. Bull. 86, 295–301 (2017)CrossRefGoogle Scholar
  26. 26.
    F. Aslan, A. Gökta, A. Tumbul, Mater. Sci. Semicond. Process. 43, 139–143 (2016)CrossRefGoogle Scholar
  27. 27.
    M. Faustini, B. Louis, P.A. Albouy, M. Kuemmel, D. Grosso, J. Phys. Chem. C 114, 7637–7645 (2010)CrossRefGoogle Scholar
  28. 28.
    S.A. Khalate, R.S. Kate, J.H. Kim, S.M. Pawar, R.J. Deokate, Superlattices Microstruct. 103, 335–342 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    H. Park, Y. Hwan, B.-S. Bae, J. Sol-Gel. Sci. Technol. 65, 23–27 (2013)CrossRefGoogle Scholar
  30. 30.
    R. Moreno, E.A. Ramirez, G.G. Guzmán, J. Phys. Conf. Ser. 687, 012041 (2016)CrossRefGoogle Scholar
  31. 31.
    S. Kahraman, S. Çetinkaya, H.A. Çetinkara, H.S. Güder, Thin Solid Films 550, 36–39 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    A.-S. Gadallah, M.M. El-Nahass, Cond. Matter Phys. 2013, 234546 (2013)Google Scholar
  33. 33.
    J. He, L. Sun, Y. Chen, J. Jiang, P. Yang, J. Chu, RSC Adv. 4, 43080 (2014)CrossRefGoogle Scholar
  34. 34.
    S. Chen, X.G. Gong, A. Walsh, S.-H. Wei, Appl. Phys. Lett. 94, 041903 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, Thin Solid Films 517, 2519–2523 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    Y.-L. Zhou, W.-H. Zhou, M. Li, Y.-F. Du, S.-X. Wu, J. Phys. Chem. C 115, 19632–19639 (2011)CrossRefGoogle Scholar
  37. 37.
    Z. Guan, W. Luo, Z. Zou, Cryst Eng Commun. 16, 2929 (2014)CrossRefGoogle Scholar
  38. 38.
    F. Biccari, R. Chierchia, M. Valentini, P. Mangiapane, E. Salza, C. Malerba, C.L. Azanza Ricardo, L. Mannarino, P. Scardi, A. Mittig, Energy Proc. 10, 187–191 (2011)CrossRefGoogle Scholar
  39. 39.
    P.A. Fernandes, P.M.P. Salom, A.F. da Cunha, J. Alloys Compd. 509(28), 7600–7606 (2011)CrossRefGoogle Scholar
  40. 40.
    P.R. Ghediya, T.K. Chaudhuri, J. Phys. D Appl. Phys. 48, 455109 (2015) (9pp)ADSCrossRefGoogle Scholar
  41. 41.
    T. Truong Mau, H. Kim, J. Ceram. Process. Res. 13(3), 301–304 (2012)Google Scholar
  42. 42.
    D. Seo, S. Lim, J. Mater. Sci. Mater. Electron. N.Y. 24(10), 3756–3763 (2013)CrossRefGoogle Scholar
  43. 43.
    J.P. Leitão, N.M. Santos, P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, J.C. González, F.M. Matinaga, Thin Solid Films 519, 7390–7393 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Stat. Sol. 15, 627–637 (1966)ADSCrossRefGoogle Scholar
  45. 45.
    D. Seo, C. Kim, E. Oh, C.W. Hong, J.H. Kim, S. Lim, J Mater Sci. Mater Electron. 25(8), 3420–3426 (2014)CrossRefGoogle Scholar
  46. 46.
    N. Vipul Kheraj, K.K. Patel, S.J. Patel, D.V. Shah, J. Cryst. Growth 362, 174–177 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    T. Zdanowicz, T. Rodziewicz, M. Zabkowska-Waclawek, Sol. Energy Mater. Sol. Cells 87, 757–769 (2005)CrossRefGoogle Scholar
  48. 48.
    G. Suresh Babu, Y.B. Kishore Kumar, P. Uday Bhaskar, S.R. Vanjari, Solar Energy Mater. Solar Cells 94, 221–226 (2010)CrossRefGoogle Scholar
  49. 49.
    K. Maeda. K. Tanaka. Y. Fukui. H. Uchiki, Sol. Energy Mater. Sol. Cells 95, 2855 (2011)CrossRefGoogle Scholar
  50. 50.
    S. Nakamura, T. Meada, T. Wada, Phys. Status Solid C 6, 1261 (2009)CrossRefGoogle Scholar
  51. 51.
    J. Paier, R. Asahi, A. Nagoya, G. Kresse, Phys. Rev. B 79, 115126 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    M. Cao, Y. Shen, J. Cryst. Growth 318, 1117 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    D. Seo, S. Lim, J. Mater. Sci. Mater. Electron. 24, 3756–3763 (2013)CrossRefGoogle Scholar
  54. 54.
    R.R. Ddy, M. Rai Kumar, T.V.R. Rao, lirfrarcd Phys. 34(1), 9SW (1993)Google Scholar
  55. 55.
    S. Ahmad, M. Mohib-ul Haq, Iran. J. Phys. Res. 14(3), 89–93 (2014)Google Scholar
  56. 56.
    K.R. Nemade, S.A. Waghuley, Int. J. Metals 2014, 389416 (2014)CrossRefGoogle Scholar
  57. 57.
    K. Sangwal, Kucharczyk “Relationship between density and refractive index of inorganic solids”. J. Phys. D: Appl. Phys. 20, 522 (1987) and W.ADSCrossRefGoogle Scholar
  58. 58.
    I.S. Babichuk, V.O. Yukhymchuk, M.O. Semenenko, N.I. Klyui, R. Caballero, O.M. Hreshchuk, I.S. Lemishko, I.V. Babichuk, V.O. Ganus, M. Leon, Semicond. Phys. Quantum Electron. Optoelectron. 17(3), 284–290 (2014)CrossRefGoogle Scholar
  59. 59.
    R. Hosseinpour, M. Izadifard, M.E. Ghazi, B. Bahramian, J. Electr. Mater. 47(2), 1080–1090 (2018)ADSCrossRefGoogle Scholar
  60. 60.
    K. Punitha, R. Sivakumar, C. Sanjeeviraja, J. Appl. Phys. 115, 113512 (2014)ADSCrossRefGoogle Scholar
  61. 61.
    K. Sharma, A.S. Al-Kabbi, G.S.S. Saini, S.K. Tripathi, Mater. Res. Bull. 47, 1400–1406 (2012)CrossRefGoogle Scholar
  62. 62.
    H. Padma Kumar, S. Vidya, S. Saravana Kumar, C. Vijayakumar, S. Solomonb, J.K. Thomas, J. Asian Ceram. Soc. 3, 64–69 (2015)CrossRefGoogle Scholar
  63. 63.
    E.A. Davis, N.F. Mott, J. Theor. Exp. Appl. Phys. 22(179), 903–922 (1970)Google Scholar
  64. 64.
    J. Henry, K. Mohanraj, G. Sivakumar, J. Asian Ceram. Soc. 4, 81–84 (2016)CrossRefGoogle Scholar
  65. 65.
    W. Daranfed, M.S. Aida, N. Attaf, J. Bougdira, H. Rinnert, J. Alloy. Compd. 542, 22–27 (2012)CrossRefGoogle Scholar
  66. 66.
    L. Majula, N.R. Mlyuka, M.E. Samiji, J. Korean Phys. Soc. 67(6), 1078–1081 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ahmed Ziti
    • 1
    • 3
    Email author
  • Bouchaib Hartiti
    • 1
  • Hicham Labrim
    • 2
  • Salah Fadili
    • 1
  • Hervé Joël Tchognia Nkuissi
    • 1
  • Abderraouf Ridah
    • 3
  • Mounia Tahri
    • 4
  • Philippe Thevenin
    • 5
  1. 1.ERDyS laboratory, MEEM & DD GroupHassan II University of Casablanca, FSTMMohammediaMorocco
  2. 2.Materials Science Unit/DERS/CNESTENRabatMorocco
  3. 3.LIMAT laboratory, Department of PhysicsFSB, Hassan II University of CasablancaCasablancaMorocco
  4. 4.UGPC/DSTE/DERS//CNESTENRabatMorocco
  5. 5.University of Lorraine, LMOPSMetzFrance

Personalised recommendations