Applied Physics A

, 125:214 | Cite as

Molecular dynamics simulation of dislocation evolution and surface mechanical properties on polycrystalline copper

  • Haitao Liu
  • Mengjiao Hao
  • Mingfang Tao
  • Yazhou SunEmail author
  • Wenkun Xie


During the nanofabrication process of polycrystalline materials, the interactions of dislocations in material determine the evolution of subsurface defects. In this paper, the molecular dynamics simulation models of nanocutting polycrystalline copper, which is used to study the relationship between the crystal structure and the cutting force during the cutting process, were established, and the transformation process between grain boundaries and dislocations was studied to get the effects of grain boundary on dislocation slip and stress conduction. The results show that there are obvious rules between cutting force and cutting process and grain boundaries can prevent dislocation slip and shielding stress conduction. The influence of different cutting parameters on the evolution of subsurface defects of workpiece was further analyzed. Finally, the nanoindentation simulations and experiments were carried out to study the influence of cutting parameters on surface mechanical properties of workpiece. It is found that to some extent, the surface hardening effect of the workpiece is remarkable with the cutting depth increase.



This work was financially supported by the National Natural Science Foundation of China (Grant no. 51475108).


  1. 1.
    C.S. Pande, K.P. Cooper, Nanomechanics of Hall–Petch relationship in nanocrystalline materials[J]. Prog. Mater Sci. 54(6), 689–706 (2009)CrossRefGoogle Scholar
  2. 2.
    T. Chookajorn, C.A. Schuh, Design of stable nanocrystalline alloys[J]. Science 337(6097), 951 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    P.R. Cantwell, M. Tang, J.D. Shen et al., Grain boundary complexions[J]. Acta Mater. 62(1), 1–48 (2014)CrossRefGoogle Scholar
  4. 4.
    R.A. Andrievskii, Thermal stability of nanomaterials[J]. J. Mater. Sci. 49(4), 1449–1460 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    I.J. Beyerlein, M.J. Demkowicz, A. Misra, et al., Defect–interface interactions[J]. Prog. Mater Sci. 74, 125–210 (2015)CrossRefGoogle Scholar
  6. 6.
    R. Barretta, M.D.S. Francesco, A nonlocal model for carbon nanotubes under axial loads[J]. Adv. Mater. Sci. Eng. 2013, 1–6 (2013)CrossRefGoogle Scholar
  7. 7.
    R. Barretta, M. Čanađija, F.M. Sciarra et al. A higher-order Eringen model for Bernoulli–Euler nanobeams[J]. Arch. Appl. Mech. 86, 483 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    R. Barretta, M. Čanađija, R. Luciano, et al., Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams[J]. Int. J. Eng. Sci. 126, 53–67 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Čanađija, R. Barretta, M.D.S. Francesco, A gradient elasticity model of Bernoulli–Euler nanobeams in non-isothermal environments[J]. Eur. J. Mech. A Solids 2015, S0997753815001291 (2015)Google Scholar
  10. 10.
    V. Yamakov, D. Wolf, S.R. Phillpot, et al., Deformation twinning in nanocrystalline Al by molecular-dynamics simulation[J]. Acta Mater. 50(20), 5005–5020 (2002)CrossRefGoogle Scholar
  11. 11.
    V. Yamakov, D. Wolf, S.R. Phillpot, et al., Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation[J]. Nat. Mater. 1(1), 45–49 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    T. Zhu, H. Gao, Plastic deformation mechanism in nanotwinned metals: an insight from molecular dynamics and mechanistic modeling[J]. Scripta Mater. 66(11), 843–848 (2012)CrossRefGoogle Scholar
  13. 13.
    A. Moitra, Grain size effect on microstructural properties of 3D nanocrystalline magnesium under tensile deformation[J]. Comput. Mater. Sci. 79(Complete), 247–251 (2013)CrossRefGoogle Scholar
  14. 14.
    Z.S. You, X.Y. Li, L.J. Gui et al., Plastic anisotropy and associated deformation mechanisms in nanotwinned metals[J]. Acta Mater. 61(1), 217–227 (2013)CrossRefGoogle Scholar
  15. 15.
    Y. Zhao, X. Wei, Y. Zhang et al., Crystallization of amorphous materials and deformation mechanism of nanocrystalline materials under cutting loads: a molecular dynamics simulation approach[J]. J. Non-Cryst. Solids 439, 21–29 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Influence of cutting parameters on the depth of, subsurface deformed layer in nano-cutting process of single crystal copper[J]. Nanoscale Res. Lett. 10(1), 396 (2015)Google Scholar
  17. 17.
    T. Kadoyoshi, H. Kaburaki, F. Shimizu et al., Molecular dynamics study on the formation of stacking fault tetrahedra and unfaulting of Frank loops in FCC metals[J]. Acta Mater. 55(9), 3073–3080 (2007)CrossRefGoogle Scholar
  18. 18.
    R.G. Hoagland, Molecular dynamics studies of the interaction of /6 <112> Shockley dislocations with stacking fault tetrahedra in copper. Part I: intersection of SFT by an isolated Shockley[J]. Philos. Mag. 89(7), 623–640 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    X. Zhao, C. Lu, A.K. Tieu et al., Deformation twinning and dislocation processes in nanotwinned copper by molecular dynamics simulations[J]. Comput. Mater. Sci. 142, 59–71 (2018)CrossRefGoogle Scholar
  20. 20.
    J. Li, J. Guo, H. Luo et al., Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations[J]. Appl. Surf. Sci. 364(3), 190–200 (2016)ADSGoogle Scholar
  21. 21.
    J. Li, B. Liu, H. Luo et al., A molecular dynamics investigation into plastic deformation mechanism of nanocrystalline copper for different nanoscratching rates[J]. Comput. Mater. Sci. 118, 66–76 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Y.B. Guo, T. Xu, M. Li, Hierarchical dislocation nucleation controlled by internal stress in nanocrystalline copper[J]. Appl. Phys. Lett. 102(24), 241910–241910 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Y.B. Guo, T. Xu, M. Li, Generalized type III internal stress from interfaces, triple junctions and other microstructural components in nanocrystalline materials[J]. Acta Mater. 61(13), 4974–4983 (2013)CrossRefGoogle Scholar
  24. 24.
    Liu. Research on Molecular Dynamics Simulation of Polycrystalline Materials[D]. Harbin Institute of Technology, Harbin (2009)Google Scholar
  25. 25.
    F. Liu, Y.C. Liang, Q.S. Bai, Y.B. Guo, Molecular dynamics simulation of nanometric cutting of polycrystalline copper[J]. Tool Eng. 44(2), 31–34 (2010)Google Scholar
  26. 26.
    S. Goel, A. Kovalchenko, A. Stukowski et al., Influence of microstructure on the cutting behaviour of silicon[J]. Acta Mater. 105, 464–478 (2016)CrossRefGoogle Scholar
  27. 27.
    J. Shi, Y. Wang, X. Yang, Nano-scale machining of polycrystalline coppers—effects of grain size and machining parameters[J]. Nanoscale Res. Lett. 8(1), 1–18 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    C. Ji, J. Shi, Y. Wang et al., Tool/chip interfacial stress distributions in atomistic machining of polycrystalline coppers[C]. ASME 2014 International Manufacturing Science and Engineering Conference Collocated with the Jsme 2014 International Conference on Materials and Processing and the, North American Manufacturing Research Conference. V001T03A019 (2014)Google Scholar
  29. 29.
    S.Z. Chavoshi, S. Goel, X. Luo, Molecular dynamics simulation investigation on the plastic flow behaviour of silicon during nanometric cutting[J]. Modell. Simul. Mater. Sci. Eng. 24(1), 015002 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    J. Li, J. Guo, H. Luo et al., Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations[J]. Appl. Surf. Sci. 364(3), 190–200 (2015)ADSGoogle Scholar
  31. 31.
    H.T. Liu, X.F. Zhu, Y.Z. Sun et al., Evolution of stacking fault tetrahedral and work hardening effect in copper single crystals[J]. Appl. Surf. Sci. 422, 413–419 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    Q. Liu, L. Deng, X. Wang et al., Formation of stacking fault tetrahedron in single-crystal Cu during nanoindentation investigated by molecular dynamics[J]. Comput. Mater. Sci. 131, 44–47 (2017)CrossRefGoogle Scholar
  33. 33.
    S. Mojumder, T. Rakib, D. Datta, Hardening mechanism of polycrystalline Al–Cu alloy nanowire through tensile loading[J]. 2017Google Scholar
  34. 34.
    M. Chamani, G.H. Farrahi, M.R. Movahhedy, Molecular dynamics simulation of nanoindentation of nanocrystalline Al/Ni multilayers[J]. Comput. Mater. Sci. 112, 175–184 (2016)CrossRefGoogle Scholar
  35. 35.
    P.Z. Zhu, C. Qiu, F.Z. Fang et al., Molecular dynamics simulations of nanometric cutting mechanisms of amorphous alloy[J]. Appl. Surf. Sci. 317, 432–442 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    T. Xu, M. Li, Topological and statistical properties of a constrained Voronoi tessellation[J]. Philos. Mag. 89(4), 349–374 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    S. Plimpton, J. Comp. Phys. 117, 1–19 (1995).
  38. 38.
    M. Stukowski, Simul. Mater. Sci. Eng. 18, 015012 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    S.M. Foiles, M.I. Baskes, M.S. Daw, Phys. Rev. B Cond. Matt. 33, 7983 (1986)ADSCrossRefGoogle Scholar
  40. 40.
    W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. J. Mater. Res. 7(06), 1564–1583 (1992)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations