Advertisement

Applied Physics A

, 125:202 | Cite as

Effect of alkali metal Na on the formation and superconductivity of Tl-1212-type phase (Tl0.85Cr0.15)Sr2−xNaxCaCu2O7

  • J. Nur-Akasyah
  • K. Muhammad-Aizat
  • Nurul Raihan Mohd-Suib
  • R. Abd-ShukorEmail author
Article
  • 12 Downloads

Abstract

The effect of Na substitution on the formation and superconductivity of Tl-1212-type phase (Tl0.85Cr0.15)Sr2−xNaxCaCu2O7 (x = 0–0.30) is reported. The samples were prepared via the solid-state reaction method. X-ray diffraction patterns showed the presence of Tl-1212-type phase or Ca0.3Sr0.7CuO2 (CSCO) as a major or minor phase in the samples. The resistance versus temperature curves showed onset transition temperature, Tc-onset between 97 and 106 K and zero-resistance temperature, Tc-zero between 88 and 99 K. AC susceptibility measurement showed superconducting transition \({T_{{\text{c}}{\chi ^\prime }}}\) between 89 and 98 K. The peak temperature, Tp, of the imaginary part of the susceptibility, χ″, was the highest for x = 0.02 sample (Tp = 96 K). The inter-grain critical current density, Jc, at Tp for x = 0 sample was Jc (Tp = 68 K) = 14 A cm−2 and for x = 0.02, 0.20 and 0.30 Jc (Tp) at 96, 96, and 88 K, respectively, is 19 A cm−2. Na substitution increased the grain size of the Tl-1212 samples. All Na-substituted samples showed higher transition temperature, enhanced critical current density, and improved inter-grain coupling compared with the non-substituted sample. This work showed that other than rare-earth elements, monovalent alkali metal such as Na could also be used to enhance the superconducting properties of the Tl-1212 phase.

Notes

Acknowledgements

This research was supported by Universiti Kebangsaan Malaysia under grant number AP-2015-006 and the Ministry of Higher Education of Malaysia under Grant no. FRGS/1/2017/STG02/UKM/01/1.

References

  1. 1.
    Z.Z. Sheng, A.M. Hermann, Nature 332, 138 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    S. Nakajima, M. Kikuchi, Y. Syono, N. Kobayashi, Y. Muto, Physica C 168, 57 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    Z.Z. Sheng, A.M. Hermann, D.C. Vier, S. Schultz, S.B. Oseroff, D.J. George, R.M. Hazen, Phys. Rev. B 38, 7074 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    Z.Z. Sheng, Y. Xin, D.X. Gu, J.M. Meason, J. Bennett, D. Ford, D.O. Pederson, Y. Xin, Z. Phys. B 84, 349 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    Z.Z. Sheng, Y. Gu, Y. Xin, Y. Xin, L.W. Finger, C.G. Hadidiacos, R.M. Hazen, Mod. Phys. Lett. B 5, 635 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    R. Abd-Shukor, S.V. Lo, J. Mater. Sci. Lett. 20, 159 (2001)CrossRefGoogle Scholar
  7. 7.
    R. Abd-Shukor, N.A.N. Jaafar, J. Mater. Sci. Mater. Electron. 10(9), 677 (1999)CrossRefGoogle Scholar
  8. 8.
    I. Hamadneh, Y.W. Kuan, L.T. Hui, R. Abd-Shukor, Mater. Lett. 60, 734 (2006)CrossRefGoogle Scholar
  9. 9.
    I.P. Abu Bakar, K. Muhammad-Aizat, J. Nur-Akasyah, M.S. Mohd-Syahmi, N.R. Mohd Suib, W.S. Chiu, R. Abd-Shukor, Appl. Phys. A 125, 21 (2019)ADSCrossRefGoogle Scholar
  10. 10.
    K. Muhammad-Aizat, R. Abd-Shukor, Sains Malays. 47, 1579 (2018)CrossRefGoogle Scholar
  11. 11.
    N.A. Khan, S. Hussain, Physica C 470, 51 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    M. Mumtaz, N.A. Khan, A. Ullah, J. Low Temp. Phys. 163, 203 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    N. Hassan, M. Irfan, N.A. Khan, S. Khan, A. Shakoor, A. Majid, A.M. Jadoon, S.S. Hayyat, J. Appl. Phys. 111, 053914 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    J. Nur-Akasyah, R. Abd-Shukor, J. Mater. Sci. Mater. Electron. 29(5), 3690 (2018)CrossRefGoogle Scholar
  15. 15.
    B.G. Krishna, R. Gundakaram, S.V. Suryanarayana, R.D.K. Misra, Physica C 200, 425 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    B. Özkurt, J. Mater. Sci. Mater. Electron. 24(7), 2426 (2013)CrossRefGoogle Scholar
  17. 17.
    B. Özkurt, J Mater Sci. Mater. Electron. 25(8), 3295 (2014)CrossRefGoogle Scholar
  18. 18.
    B. Özkurt, J. Supercond. Nov. Magn. 28(5), 1501 (2015)CrossRefGoogle Scholar
  19. 19.
    M. Gürsul, A. Ekicibil, B. Özçelik., M.A. Madre, A. Sotelo, J. Supercond. Nov. Magn. 28(7), 1913 (2015)CrossRefGoogle Scholar
  20. 20.
    B. Özçelik, M. Gürsul, A. Sotelo., M.A. Madre, J. Mater. Sci. Mater. Electron. 26(5), 2830 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Çalɪş, B. Özkurt, M.E. Aytekin, E. Gün, M.E. Kɪr, U. Öztornacɪ, J. Mater. Sci. Mater. Electron. 27(3), 2670 (2016)CrossRefGoogle Scholar
  22. 22.
    B. Özçelik, O. Nane, A. Sotelo, H. Amaveda, M.A. Madre, J. Mater. Sci. Mater. Electron. 28(8), 6278 (2017)CrossRefGoogle Scholar
  23. 23.
    B. Özkurt, J. Mater. Sci. Mater. Electron. 28(12), 8857 (2017)CrossRefGoogle Scholar
  24. 24.
    N.A. Khan, S. Hussain, J. Alloy Compd. 475(1–2), 652 (2009)CrossRefGoogle Scholar
  25. 25.
    R.D. Shannon, Acta Cryst. A32, 751 (1976)CrossRefGoogle Scholar
  26. 26.
    M. Iranmanesh, N.D. Zhigadlo, T. Tohsophon, J.R. Kirtley, W. Assenmacher, W. Mader, J. Hulliger, Solid State Sci. 88, 6 (2019)ADSCrossRefGoogle Scholar
  27. 27.
    C.P. Bean, Rev. Mod. Phys. 31, 36 (1964)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • J. Nur-Akasyah
    • 1
  • K. Muhammad-Aizat
    • 1
  • Nurul Raihan Mohd-Suib
    • 1
    • 2
  • R. Abd-Shukor
    • 1
    Email author
  1. 1.School of Applied PhysicsUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Faculty of Applied SciencesUniversiti Teknologi MARAShah AlamMalaysia

Personalised recommendations