Applied Physics A

, 125:197 | Cite as

Electrical conductivity, magnetism, and optical properties of reduced \(\hbox {BaCeO}_3\)

  • Phieraya Pulphol
  • Naratip Vittayakorn
  • Wanwilai Vittayakorn
  • Taras KolodiazhnyiEmail author


\(\hbox {BaCeO}_3\)-based perovskites are well-known proton and oxygen ion conductors. For practical applications as electrolytes in solid oxide fuel cells, these compounds must be robust towards reduction of cerium ion. In this work, we explore the effect of reducing atmosphere on the physical properties of undoped and Nb-doped \(\hbox {BaCeO}_3\). The \(\hbox {BaCeO}_3\) perovskite structure is thermodynamically stable at least up to 1450 \(^{\circ }\hbox {C}\) upon annealing in \(\hbox {H}_2\)-containing atmosphere. Annealing at 1550 \(^{\circ }\hbox {C}\) causes a decomposition of the \(\hbox {BaCeO}_3\). The higher annealing temperature leads to higher concentration of \(\hbox {Ce}^{3+}\) ions and a higher electrical conductivity. With increasing the annealing temperature from 1300 to 1450 \(^{\circ }\hbox {C}\), the activation energy of conductivity decreases from \(\hbox {E}_a\) = 0.31–0.263 eV. We attribute the electrical conductivity in reduced \(\hbox {BaCeO}_3\) to the activation of the small polaron hopping in agreement with the recent first-principles calculations. However, in contrast to the theoretical predictions, we find no evidence of the \(\hbox {Ce}^{3+}\)\(\hbox {Ce}^{3+}\) spin-singlet small bipolarons.



P.P. was financially supported by KMITL for PhD scholarship and internal NIMS Grant PA4020. The work of N.V. was supported by King Mongkut’s Institute of Technology Ladkrabang under Grant 2562-01-05-46. N.V. and T.K. would like to acknowledge the “Academic Melting-Pot” program.


  1. 1.
    D. Medvedev, A. Murashkina, E. Pikalova et al., \({\rm BaCeO}_3\): materials development, properties and application. Prog. Mater. Sci. 60, 72–129 (2014)CrossRefGoogle Scholar
  2. 2.
    K.D. Kreuer, Th Dippel, Y.M. Baikov et al., Water solubility, proton and oxygen diffusion in acceptor doped \({\rm BaCeO}_3\): a single crystal analysis. Solid State Ion. 86–88, 613–620 (1996)CrossRefGoogle Scholar
  3. 3.
    S. Ikeda, O. Sakurai, K. Uematsu et al., Electrical conductivity of yttria-stabilized zirconia single crystals. J. Mater. Sci. 20, 4593–4600 (1985)ADSCrossRefGoogle Scholar
  4. 4.
    V.V. Kharton, A.L. Shaula, F.M.B. Marques, Oxygen ion transport numbers: assessment of combined measurement methods. Ionics 13, 163–171 (2007)CrossRefGoogle Scholar
  5. 5.
    J. Faber, C. Geoffroy, A. Roux et al., A systematic iinvestigation of the dc electrical conductivity of rare-earth doped ceria. Appl. Phys. A 49, 225–232 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    M. Munch, G. Seifert, K.D. Kreuer et al., A quantum molecular dynamics study of proton conduction phenomena in \({\rm BaCeO}_3\). Solid State Ion. 86–88, 647–652 (1996)CrossRefGoogle Scholar
  7. 7.
    K.A. Furøy, R. Haugsrud, M. Hansel et al., Role of protons in the electrical conductivity of acceptor-doped \({\rm BaPrO}_3\), \({\rm BaTbO}_3\), and \({\rm BaThO}_3\). Solid State Ion. 178, 461–467 (2007)CrossRefGoogle Scholar
  8. 8.
    H. Iwahara, H. Uchida, K. Ono et al., Proton conduction in sintered oxides based on \({\rm BaCeO}_3\). J. Electrochem. Soc. 135, 529–533 (1988)CrossRefGoogle Scholar
  9. 9.
    I. Kuskovsky, B.S. Lim, A.S. Nowick, Low-temperature dielectric relaxation peaks involving proton tunneling in \({\rm Ba}_{1-x}{\rm Nd}_x{\rm CeO}_3\). Phys. Rev. B 60, R3713 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    T. Tomoyose, N. Shimoji, K. Wakamura, Proton diffusion in perovskite-type oxides based on small polaron model. J. Phys. Soc. Jpn. 74, 3011–3015 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    A. Braun, Q. Chen, Experimental neutron scattering evidence for proton polaron in hydrated metal oxide proton conductors. Nat. Commun. 8, 15830 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    P.G. Sundell, M.E. Bjorketun, G. Wahnstrom, Density-functional calculations of prefactors and activation energies for H diffusion in \({\rm BaZrO}_3\). Phys. Rev. B 76, 094301 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    W.B. Wang, J.W. Liu, Y.D. Li et al., Microstructures and proton conduction behaviors of Dy-doped \({\rm BaCeO}_3\) ceramics at intermediate temperature. Solid State Ion. 181, 667–671 (2010)CrossRefGoogle Scholar
  14. 14.
    N.I. Matskevich, T. Wolf, M.Y. Matskevich et al., Preparation, stability and thermodynamic properties of Nd- and Lu-doped \({\rm BaCeO}_3\) proton-conducting ceramics. Eur. J. Inorg. Chem. 11, 1477–1482 (2009)CrossRefGoogle Scholar
  15. 15.
    M. Swift, A. Janotti, C.G. Van de Walle, Small polarons and point defects in barium cerate. Phys. Rev. B 92, 214114 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    J.M. Polfus, M. Peshahang, R. Bredesen, Influence of \({\rm Ce}^{3+}\) polarons on grain boundary space-charge in proton conducting Y-doped \({\rm BaCeO}_3\). Phys. Chem. Chem. Phys. 20, 16209 (2018)CrossRefGoogle Scholar
  17. 17.
    V. Petricek, M. Dusek, L. Palatinus, Crystallographic computing system JANA2006: general features. Z. Kristallogr. 229, 345–352 (2014)Google Scholar
  18. 18.
    F. Zhang, C.H. Chen, J.M. Raitano et al., Phase stability in ceria–zirconia binary oxide nanoparticles: the effect of the \({\rm Ce}^{3+}\) concentration and the redox environment. J. Appl. Phys. 99, 084313 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    W. Wu, L.M. Savereide, J. Notestein et al., In-situ IR spectroscopy as a probe of oxidation/reduction of Ce in nanostructured \({\rm CeO}_2\). Appl. Surf. Sci. 445, 548–54 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    L.A.J. Garvie, P.R. Buseck, Determination of \({\rm Ce}^{4+}/{\rm Ce}^{3+}\) in electron-beam-damaged \({\rm CeO}_2\) by electron energy-loss spectroscopy. J. Phys. Chem. Solids 60, 1943–47 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    T. Kolodiazhnyi, H. Sakurai, A.A. Belik et al., Unusual lattice evolution and magnetochemistry of Nb doped \({\rm CeO}_2\). Acta Mater. 113, 116–123 (2016)CrossRefGoogle Scholar
  22. 22.
    T. Kolodiazhnyi, T. Charoonsuk, Y.-S. Seo et al., Magnetic, optical and electron transport properties of n-type \({\rm CeO}_2\): small polarons versus Anderson localization. Phys. Rev. B 95, 045203 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Hinatsu, N. Edelstein, Electron paramagnetic resonance spectrum of Pr\(^{4+}\) in \({\rm BaCeO}_3\). J. Solid State Chem. 112, 53–57 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    T. Kolodiazhnyi, S.C. Wimbush, Spin-singlet small bipolarons in Nb-doped \({\rm BaTiO}_3\). Phys. Rev. Lett. 96, 2464041 (2006)CrossRefGoogle Scholar
  25. 25.
    D. Emin, Pair breaking in semiclassical singlet small-bipolaron hopping. Phys. Rev. B 53, 1260 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    H.M. Chan, M.P. Harmer, D.M. Smyth, Compensating defects in highly donor-doped \({\rm BaTiO}_3\). J. Am. Ceram. Soc. 69, 507–10 (1986)CrossRefGoogle Scholar
  27. 27.
    Q. Zhou, P. Blanchard, B.J. Kennedy et al., Synthesis, structural and magnetic studies of the double perovskites \({\rm Ba}_2{\rm Ce}{M}{\rm O}_6\) (M = Ta, Nb). Chem. Mater. 24, 2978–2986 (2012)CrossRefGoogle Scholar
  28. 28.
    G. Catalan, D. O’Neill, R.M. Bowman et al., Relaxor features in ferroelectric superlattices: a Maxwell–Wagner approach. Appl. Phys. Lett. 77, 3078–3080 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    L. Sun, X. Huang, L. Wang et al., Disentangling the role of small polarons and oxygen vacancies in \({\rm CeO}_2\). Phys. Rev. B 95, 245101 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    T. Kolodiazhnyi, P. Tipsawat, T. Charoonsuk, T. Kongnok, N. Vittayakorn, S. Jungthawan, S. Suthirakun, S. Maensiri, Disentangling small polaron and Anderson localization effects in ceria: combined experimental and first-principles study. Phys. Rev. B 99, 035144 (2019)ADSCrossRefGoogle Scholar
  31. 31.
    J. Wang, C. Huang, X. Chen et al., Photocatalytic \({\rm CO}_2\) reduction of \({\rm BaCeO}_3\) with 4f configuration electrons. Appl. Surf. Sci. 358, 463–4 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    T. He, P. Ehrhart, P. Meuffels, Optical band gap and Urbach tail in Y-doped \({\rm BaCeO}_3\). J. Appl. Phys. 79, 3219–3223 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    H.G. Reik, D. Heese, Frequency dependence of the electrical conductivity of small polarons for high and low temperatures. J. Phys. Chem. Solids 28, 581–596 (1967)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electroceramic Research Laboratory, College of NanotechnologyKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  2. 2.Advanced Material Research Unit, Faculty of ScienceKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  3. 3.Nano-KMITL Center of Excellence on Nanoelectronic DevicesKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  4. 4.National Institute for Materials ScienceTsukubaJapan

Personalised recommendations