Applied Physics A

, 125:223 | Cite as

Heating of a degenerate electron ensemble in a well of compound semiconductors at low lattice temperatures

  • B. Roy
  • S. Bhattacharyya
  • D. P. BhattacharyaEmail author


At low lattice temperatures, an ensemble of electrons exhibits some specific features which are hardly observed for higher lattice temperatures. Considering a two-dimensional ensemble of non-equilibrium electrons in a quantum well of compound semiconductors, the dependence of the effective electron temperature upon the electric field has been analysed under the condition when the lattice temperature is low. The aim of the analysis has been to assess how does the degeneracy of the ensemble and the piezoelectric interaction of the electrons, result in changes in the electron temperature characteristics at low lattice temperatures. Numerical results are obtained for quantum wells of InSb, GaAs and GaN which are potentially used for the device purpose. The assessment is made through the comparison of the results obtained from the present analysis with other theoretical and experimental results which are available in the literature. The analysis predicts that the low-temperature features result in significant changes in the characteristics. In the absence of appropriate experimental data in the literature, any conclusive comparison of the theoretical results of the present analysis with the experiment could hardly be made. However, a rather cursory comparison for the wells of GaAs with the indirectly obtained effective temperature characteristics of the electrons shows some qualitative similarity, particularly for the regime of low electric fields. The results of the present approximate analysis being interesting, it holds promise for further work in the same field.



B. Roy is indebted to University Grants Commission, New Delhi, India for the award of UGC-NET JRF [UGC-Ref.No.: 34121/(NET-DEC. 2014)]. The authors also acknowledge the help rendered by S. Saha and A. Paul.


  1. 1.
    E.M. Conwell, High Field Transport in Semiconductors (Academic Press, New York, 1967)Google Scholar
  2. 2.
    J.H. Davies, The Physics of Low-Dimensional Semiconductors (Cambridge University Press, Cambridge, 1998)Google Scholar
  3. 3.
    B.R. Nag, Physics of Quantum Well Devices (Kluwer Academic Publishers, Dordrecht, 2000)Google Scholar
  4. 4.
    T. Ando, A.B. Fowler, F. Stern, Rev. Mod. Phys. 54, 437 (1982)ADSCrossRefGoogle Scholar
  5. 5.
    G. Bauer, Springer Tracts in Modern Physics, vol. 74 (Springer, New York, 1974)Google Scholar
  6. 6.
    H.L. Störmer, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Phys. Rev. B 41, 1278 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    R. Stratton, Proc. R. Soc. Ser. A 246, 406 (1958)ADSGoogle Scholar
  8. 8.
    B.R. Nag, Theory of Electrical Transport in Semiconductors (Pergamon Press, Oxford, 1972)Google Scholar
  9. 9.
    B.R. Nag, Electron Transport in Compound Semiconductors (Springer, Berlin, 1980)CrossRefGoogle Scholar
  10. 10.
    L.F. Mao, H. Ning, C. Hu, Z. Lu, G. Wang, Sci. Rep. 6, 24777. (2016)ADSCrossRefGoogle Scholar
  11. 11.
    T. Hatakeyama, K. Fushinobu, Heat Transfer Eng. 29(2), 120 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    M. Grupen, IEEE Trans. Electron Devices 63(8), 3096 (2016)ADSGoogle Scholar
  13. 13.
    B. Das, A. Basu, J. Das, D.P. Bhattacharya, Phys. B 474, 21 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    S. Nag, D.P. Bhattacharya, Phys. B 404, 4207 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    F.F. Fang, A.B. Fowler, J. Appl. Phys. 41, 1895 (1970)Google Scholar
  16. 16.
    J. Shah, A. Pinczuk, H.L. Störmer, A.C. Gossard, W. Wiegmann, Appl. Phys. Lett. 42(1), 55 (1983)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Shinba, K. Nakamura, J. Phys. Soc. Jpn. 50, 114 (1981)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Shinba, K. Nakamura, M. Fukuchi, M. Sakata, J. Phys. Soc. Jpn. 51, 157 (1982)ADSCrossRefGoogle Scholar
  19. 19.
    C.Y. Wu, G. Thomas, Phys. Rev. B 9, 1724 (1974)ADSCrossRefGoogle Scholar
  20. 20.
    D.K. Ferry, Surf. Sci. 57, 218 (1976)ADSCrossRefGoogle Scholar
  21. 21.
    P.K. Basu, B.R. Nag, J. Phys. C Solid State Phys. 14, 1519 (1981)ADSCrossRefGoogle Scholar
  22. 22.
    S.S. Paul, A.K. Ghorai, D.P. Battacharya, Phys. Rev. B 48, 18268 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    A. Basu, B. Das, T.R. Middya, D.P. Bhattacharya, J. Phys. Chem. Sol. 100, 9 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    A. Basu, B. Das, T.R. Middya, D.P. Bhattacharya, Phil. Mag. 98, 803 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    J. Karlovsky, Phys. Rev. 127, 419 (1962)ADSCrossRefGoogle Scholar
  26. 26.
    R. Yang, K.N. Gao, Y.H. Zhang, P.P. Chen, G. Yu, L.M. Wei, T. Lin, N. Dai, J.H. Chu, J. Appl. Phys. 109, 063703 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    F. Wu, K.N. Gao, Z.Q. Li, T. Lin, W.Z. Zhou, J. Appl. Phys. 117, 155701 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Z.S. Kachlishvili, Phys. Status Solidi B 43, 6 (1971)Google Scholar
  29. 29.
    S. Nag, D.P. Bhattacharya, J. Phys. Chem. Sol. 76, 59 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsJadavpur UniversityKolkataIndia

Personalised recommendations