Advertisement

Applied Physics A

, 125:183 | Cite as

Studies of structural, electrical, and excitation performance of electronic material: europium substituted 0.9(Bi0.5Na0.5TiO3)–0.1(PbZr0.48Ti0.52O3)

  • Manisha SahuEmail author
  • Sanjib Kumar Pradhan
  • Sugato Hajra
  • Basanta K. Panigrahi
  • R. N. P. Choudhary
Article
  • 34 Downloads

Abstract

The polycrystalline samples having composition Bi0.45Eu0.02Na0.45Pb0.1Zr0.048Ti0.952O3 (BNPZTE-2 abbreviated ahead), Bi0.41Eu0.04Na0.45Pb0.1Zr0.048Ti0.952O3 (BNPZTE-4 abbreviated ahead), Bi0.39Eu0.06Na0.45Pb0.1Zr0.048Ti0.952O3 (BNPZTE-6 abbreviated ahead) had been synthesised using the mixed oxide processing route. The prepared samples were found to be in single phase and crystallize in tetragonal structure. The surface morphology suggests the high density grain growth in all samples. The electrical behavior (dielectric, impedance, and modulus) of the prepared samples collected at various temperatures and frequencies. The value of activation energy had been evaluated from the temperature dependent conductivity plot. The grain and grain boundary contribution to the polarization process have been depicted from the impedance analysis. The parallel plate capacitor structure was proposed to unveil the influence of applied electric field on the excitation of samples. The prepared samples will find its application in the filter application (noise removal) or buffering circuit.

Notes

Acknowledgements

The authors like to share their gratitude to Mrs Wendy Fa of Xiguanya Mining Industry, China for supply of rare-earth oxide, Dr. KL Yadav, IIT Roorke for SEM experiment, Professor Perumal Alagarsamy, IIT Guwahati for magnetic measurements and Miss Varsha Purohit for some experimental help.

Author contributions

MS prepared the samples and done the electrical characterization. SKP did some experiment. SH prepared the draft and done the analysis. BKP evaluates the device performance and RNPC supervised the work.

References

  1. 1.
    G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797 (1999)CrossRefGoogle Scholar
  2. 2.
    S.O. Leontsev, R.E. Eitel, Progress in engineering high strain lead-free piezoelectric ceramics. Sci. Technol. Adv. Mater. 11, 044302 (2010)CrossRefGoogle Scholar
  3. 3.
    S.O. Leontsev, R.E. Eitel, Dielectric and piezoelectric properties in Mn-modified (1–x)BiFeO3–xBaTiO3 ceramics. J. Am. Ceram. Soc. 92, 2957–2961 (2009)CrossRefGoogle Scholar
  4. 4.
    Q. Dunmin Lin, Y. Zheng, Y. Li, Q. Wan, W. Li, Zhou, Microstructure, ferroelectric and piezoelectric properties of Bi0.5K0.5TiO3-modified BiFeO3–BaTiO3 lead free ceramics with high Curie temperature. J. Eur. Ceram. Soc. 33, 3023–3036 (2013)CrossRefGoogle Scholar
  5. 5.
    T. Sebastian, I. Sterianou, D.C. Sinclair, A.J. Bell, D.A. Hall, I.M. Reaney, High temperature piezoelectric ceramics in the Bi(Mg1/2Ti1/2)O3-BiFeO3-BiScO3-PbTiO3 system. J. Electroceram. 25, 130–134 (2010)CrossRefGoogle Scholar
  6. 6.
    C.-Hyo Hong, H.-P. Kim, B.-Yul Choi, H.-Su Han, J.S. Son, C.W. Ahn, W. Jo, Lead-free piezoceramics—where to move on? J. Materiomics 2, 1–24 (2016)CrossRefGoogle Scholar
  7. 7.
    J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 35, 1659–1681 (2015)CrossRefGoogle Scholar
  8. 8.
    G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Krainik, New ferroelectrics of complex composition. Sov. Phys. Solid State 2, 2651 (1961)Google Scholar
  9. 9.
    B.K. Barick, K.K. Mishra, A.K. Arora, R.N.P. Choudhary, D.K. Pradhan, Impedance and Raman spectroscopic studies of (Na0.5Bi0.5)TiO3. J. Phys. D 44, 355402 (2011)CrossRefGoogle Scholar
  10. 10.
    Y. Karabulut, M. Ayvacikli, A. Canimoglu, J.G. Guinea, Z. Kotan, E. Ekdal, O. Akyuz, N. Can, Synthesis and luminescence properties of trivalent rare-earth element-doped calcium stannate phosphors. Spectrosc. Lett. 47, 630–641 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Claubschat,B. Perschied, W.D. Schneider, Phys. Rev. B 28, 4342–4348 (1985)Google Scholar
  12. 12.
    R. Khazanchi, S. Sharma, T.C. Goel, Effect of rare earth europium substitution on the microstructure, dielectric, ferroelectric and pyroelectric properties of PZT Ceramics. J. Electroceram. 14, 113 (2005)CrossRefGoogle Scholar
  13. 13.
    D.C. Ajai Garg, Agrawal, Effect of rare earth (Er, Gd, Eu, Nd and La) and bismuth additives on the mechanical and piezoelectric properties of lead zirconate titanate ceramics. Mater. Sci. Eng. B 86, 134–143 (2001)CrossRefGoogle Scholar
  14. 14.
    H. Sun, Q. Zhang, X. Wang, T. Zhang, Bi0.5Na0.5TiO3:Eu3+: an intense blue converting red phosphor. Mater. Lett. 131,, 164–166 (2014)CrossRefGoogle Scholar
  15. 15.
    H. Jeong, K. Oh, S.R. Han, T.F. Morse, Characterization of broadband amplified spontaneous emission from an Er 3+–Tm 3+ co-doped silica fiber. Chem. Phys. Lett. 367, 507–511 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    G.C. Righiniy, M. Brenci, M.A. Forastiere, S. Pelli, G. Ricci, Rare-earth-doped glasses and ion-exchanged integrated optical amplifiers and lasers. Philos. Mag. B 82, 721–734 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    B. Sahoo, V.A. Jaleel, P.K. Panda, Development of PZT powders by wet chemical method and fabrication of multilayered stacks/actuators. Mater. Sci. Eng. B 126, 80–85 (2006)CrossRefGoogle Scholar
  18. 18.
    E. Wu, "POWD", An interactive Powder diffraction data interpretation and indexing Program, Ver 2.1, School of Physical Sciences, Flinders University of South Australia, Bedford Park, S.A. 5042, Australia (1989)Google Scholar
  19. 19.
    A.L. Patterson, The scherrer formula for X-Ray particle size determination. Phys. Rev. 56, 978 (1939)ADSCrossRefGoogle Scholar
  20. 20.
    C. Kornpom, T. Udeye, T. Bongkarn, The preparation of lead-free bismuth sodium titanate ceramics via the solid state combustion technique. Integr. Ferroelectr. 177, 59–68 (2017)CrossRefGoogle Scholar
  21. 21.
    T. Ikeda, T. Okano, Piezoelectric Ceramics of Pb (Zr–Ti) O3 modified by A1 + B5 + O3 or A3 + B3 + O3. Jpn. J. Appl. Phys. 3, 263 (1964)Google Scholar
  22. 22.
    J.E. Garcia, V. Gomis, R. Perez, A. Albareda, J.A. Eiran, Unexpected dielectric response in lead zirconate titanate ceramics: the role of ferroelectric domain wall pinning effects. Appl. Phys. Lett. 91, 0429021 (2007)Google Scholar
  23. 23.
    S. Hajra, S. Sahoo, R. Das, R.N.P. Choudhary, Structural, dielectric and impedance characteristics of (Bi0.5Na0.5)TiO3–BaTiO3 electronic system. J. Alloy. Compd. 750, 507–514 (2018)CrossRefGoogle Scholar
  24. 24.
    K. Parida, S.K. Dehury, R.N.P. Choudhary, Electrical, optical and magneto-electric characteristics of BiBaFeCeO6 electronic system. Mater. Sci. Eng. B 225, 173–181 (2017)CrossRefGoogle Scholar
  25. 25.
    M. Sahu, S. Hajra, R.N.P. Choudhary, Structural, electrical and dielectric characteristics of strontium-modified CaCu3Ti4O12. Sn Appl. Sci. 1, 13 (2019)CrossRefGoogle Scholar
  26. 26.
    S. Chatterjee, P.K. Mahapatra, R.N.P. Choudhary, A.K. Thakur, Complex impedance studies of sodium pyrotungstate—Na2W2O7. Phys. Status Solidi 201, 588–892 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    J.R. Macdonald, Note on the parameterization of the constant-phase admittance element. Solid State Ion 13, 147–149 (1984)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    I.M. Hodge, M.D. Ingram, A.R. West, Impedance and modulus spectroscopy of polycrystalline solid electrolytes. J. Electro. Anal. Chem. 74, 125–143 (1976)CrossRefGoogle Scholar
  30. 30.
    A.K. Roy, K. Prasad, A. Prasad, Piezoelectric, impedance, electric modulus and AC conductivity studies on (Bi0.5Na0.5)0.95Ba0.05TiO3 ceramic. Process. Appl. Ceram. 7, 81–91 (2013)CrossRefGoogle Scholar
  31. 31.
    S. Nath, S.K. Barick, S. Hajra, R.N.P. Choudhary, Studies of structural, impedance spectroscopy and magnetoelectric properties of (SmLi)1/2)(Fe2/3Mo1/3)O3 electroceramics. J. Mater. Sci. Mater. Electron. 29, 12251–12257 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Manisha Sahu
    • 1
    Email author
  • Sanjib Kumar Pradhan
    • 2
  • Sugato Hajra
    • 1
  • Basanta K. Panigrahi
    • 3
  • R. N. P. Choudhary
    • 4
  1. 1.Department of Electronics and Instrumentation EngineeringSiksha’O’ Anusandhan deemed to be UniversityBhubaneswarIndia
  2. 2.Department of Electronics and Communication EngineeringSiksha’O’ Anusandhan deemed to be UniversityBhubaneswarIndia
  3. 3.Department of Electrical EngineeringSiksha’O’ Anusandhan deemed to be UniversityBhubaneswarIndia
  4. 4.Advance Materials and Multifunctional LaboratorySiksha’O’ Anusandhan deemed to be UniversityBhubaneswarIndia

Personalised recommendations