Applied Physics A

, 125:212 | Cite as

Enhanced near-band edge emission in pulsed laser deposited ZnO/c-sapphire nanocrystalline thin films

  • Veeresh KumarEmail author
  • Himanshu Sharma
  • Shushant Kumar Singh
  • Shalendra Kumar
  • Ankush VijEmail author


We report on the enhanced near-band edge emission with negligible defect-assisted emission in ZnO nanocrystalline thin films of varying thickness on c-sapphire substrates. X-ray diffraction studies reveal wurtzite structure of thin films grown preferentially along (002) plane. The crystallinity and grain size of the deposited films have been increased with increase in film thickness. The band gap of the films was calculated by Tauc’s plot which shows negligible change in band gap with increase in thickness of ZnO film. The various Raman modes observed in ZnO thin films of different thicknesses support the formation of hexagonal wurtzite structure. The room temperature photoluminescence (PL) spectrum shows the strong near-band edge emission in the wavelength range 378–381 nm which further enhances with film thickness. The enhanced PL emission in near ultraviolet visible (UV) region with negligible defect-assisted emission may find potential applications in ZnO-based UV-excited light-emitting diodes.



Authors are grateful to the Head, Centre for Material Science and Engineering, National Institute of Technology, Hamirpur (H.P) for providing experimental facilities to carry out this work. The authors are highly thankful prof. M. K. Banerjee Department of Metallurgical & Materials Engineering, Malaviya National Institute of Technology Jaipur for their valuable suggestions. The authors also acknowledge the funds provided by UGC-DAE Consortium Scientific Research (CSR-IC-BL-74/CRS-191/2016-17/855), India in terms of a research project.


  1. 1.
    S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Superlattices Microstruct. (Academic Press, Cambridge, 2003), pp. 3–32Google Scholar
  2. 2.
    A. Vij, S. Gautam, S.O. Won, A. Thakur, I.J. Lee, K.H. Chae, Mater. Lett. 88, 51 (2012)CrossRefGoogle Scholar
  3. 3.
    P. Novak, J. Briscoe, T. Kozak, M. Kormunda, M. Netrvalova, S. Bachrata, Thin Solid Films 634, 169 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Ryu, T.S. Lee, J.A. Lubguban, H.W. White, B.J. Kim, Y.S. Park, C.J. Youn, Appl. Phys. Lett. 88, 241108 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    A. Kuoni, R. l Holzherr, M. Boillat, N.F. de Rooij, J. Micromech. Microeng. 13, S103 (2003)CrossRefGoogle Scholar
  6. 6.
    P. Mitra, A.P. Chatterjee, H.S. Maiti, Mater. Lett. 35, 33 (1998)CrossRefGoogle Scholar
  7. 7.
    P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, G.A. Gehring, Nat. Mater. 2, 673 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    J.H. Lim, C.K. Kong, K.K. Kim, I.K. Park, D.K. Hwang, S.J. Park, Adv. Mater. 18, 2720 (2006)CrossRefGoogle Scholar
  10. 10.
    A. Mitra, R.K. Thareja, J. Appl. Phys. 89, 2025 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, G. Boschloo, J. Phys. Chem. B 110, 16139 (2006)CrossRefGoogle Scholar
  12. 12.
    Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, H. Zhang, Small 6, 307 (2010)CrossRefGoogle Scholar
  13. 13.
    M. Ohyama, H. Kozuka, T. Yoko, Thin Solid Films 306, 78 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    D.H. Zhang, J. Phys. D Appl. Phys. 28, 1273 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    M.H. Habibi, M. Khaledi Sardashti, J. Iran. Chem. Soc. 5, 603 (2008)CrossRefGoogle Scholar
  16. 16.
    R. Al Asmar, G. Ferblantier, F. Mailly, P. Gall-Borrut, A. Foucaran, Thin Solid Films 473, 49 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    F.K. Shan, B.C. Shin, S.W. Jang, Y.S. Yu, J. Eur. Ceram. Soc. 24, 1015 (2004)CrossRefGoogle Scholar
  18. 18.
    B.J. Jin, S. Im, S.Y. Lee, Thin Solid Films 366, 107 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    M.A. Salim, Int. J. Appl. Res. 2, 726 (2016)Google Scholar
  20. 20.
    J.-M. Myoung, W.-H. Yoon, D.-H. Lee, I. Yun, S.-H. Bae, S.-Y. Lee, Jpn. J. Appl. Phys. 41, 28 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    V. Kumar, S.K. Singh, H. Sharma, S. Kumar, M.K. Banerjee, A. Vij, Phys. B Condens. Matter 552, 221 (2019)ADSCrossRefGoogle Scholar
  22. 22.
    S.K. Singh, R. Singhal, Appl. Surf. Sci. 439, 919 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    B.D. Cullity, Element of X-Ray Diffraction (Prentice Hall, Upper Saddle River, 1956)Google Scholar
  24. 24.
    R. Ghosh, D. Basak, S. Fujihara, J. Appl. Phys. 96, 2689 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    A. Kropidłowska, J. Chojnacki, A. Fahmi, B. Becker, Dalton Trans. 2, 6825 (2008)CrossRefGoogle Scholar
  26. 26.
    H.S. Zhang, J.L. Endrino, A. Anders, Appl. Surf. Sci. 255, 2551 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    S.S. Kumar, A. Sharma, G.M. Rao, S. Suwas, J. Alloys Compd. 695, 1020 (2017)CrossRefGoogle Scholar
  28. 28.
    J. Tauc, (Sci. Res. Publ., Amsterdam, 1972) (n.d.)Google Scholar
  29. 29.
    S. Sharma, C. Periasamy, P. Chakrabarti, Electron. Mater. Lett. 11, 1093 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    S.K. Singh, R. Singhal, R. Vishnoi, V.V.S. Kumar, P.K. Kulariya, Indian J. Phys. 91, 547 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    Y.J. Onofre, S. de Castro, M.P.F. de Godoy, Mater. Lett. 188, 37 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsMalaviya National Institute of Technology Jaipur-JLN MargJaipurIndia
  2. 2.Electronic Materials and Nanomagnetism Lab, Department of Applied Physics, Amity School of Applied ScienceAmity University HaryanaGurgaonIndia
  3. 3.Nanophosphors Lab, Department of Applied Physics, Amity School of Applied ScienceAmity University HaryanaGurgaonIndia

Personalised recommendations