Advertisement

Applied Physics A

, 125:186 | Cite as

Design of dual-band antenna using an optimized complementary split ring resonator

  • Abdelmalek ReddafEmail author
  • Fatima Djerfaf
  • Karim Ferroudji
  • Mounir Boudjerda
  • Khaled Hamdi-Chérif
  • Isslam Bouchachi
Article
  • 60 Downloads

Abstract

The goal of this study is to propose a method to optimize the dimension and the position of complementary split ring resonator considered as a defect structure in the ground to obtain a dual-band antenna. Therefore, the ground of the antenna is graved by the optimized complementary split ring resonator through Particle Swarm Optimization method. The designed antenna operates in two bands, 2.4 GHz and 5 GHz. The area of the proposed antenna is reduced approximately by 81.3% compared to the conventional antenna alone without complementary resonators cell. Furthermore, the return loss is improved from − 15 to − 26 dB. As well, the gain and bandwidth are improved for the two resonance frequencies.

Notes

References

  1. 1.
    A.A. Masius, Y.C. Wong, Y. Chiew, Parameter optimization of staircase shaped co-planar waveguide monopole antenna with modified ground plane for radio-frequency energy harvesting application. J. Telecommun. Electron. Comput. Eng. 9(4), 103–107‏ (2017)Google Scholar
  2. 2.
    M. Kumar, V. Nath, Analysis of low mutual coupling compact multi-band microstrip patch antenna and its array using defected ground structure, Eng. Sci. Technol. Int. J. 19(2), 864–874 (2015)Google Scholar
  3. 3.
    Y. Sung, Investigation into the polarization of asymmetrical-feed tri-angular microstrip antennas and its application to reconfigurable antennas. IEEE Trans. Antennas Propag. 58(4), 1039–1046 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    M. Kumar Khandelwal, B.K. Kanaujia, S. Kumar, Defected ground structure: fundamentals, analysis, and applications in modern wireless trends. Int. J. Antennas Propag. 2017, 2018527 (2017)Google Scholar
  5. 5.
    G.S. Gill, E.H. Singh, Y. Singh, A novel dual band patch antenna for wlan communications. IRJET 2(5), 960–963 (2015)Google Scholar
  6. 6.
    K.I.M. Jun-Won et al., Compact multiband microstrip antenna using inverted-L-and T-shaped parasitic elements. IEEE Antennas Wirel. Propag. Lett. 12, 1299–1302‏ (2013)ADSCrossRefGoogle Scholar
  7. 7.
    G. Shehata, M. Mohanna, M.L. Rabeh, Tri-band small monopole antenna based on SRR units. NRIAG J Astron Geophys 4(2), 185–191‏ (2015)ADSCrossRefGoogle Scholar
  8. 8.
    GAO, Peng et al., Compact printed wide-slot UWB antenna with 3.5/5.5-GHz dual band-notched characteristics. IEEE Antennas Wirel. Propag. Lett. 12, 983–986‏ (2013)ADSCrossRefGoogle Scholar
  9. 9.
    ZHANG, Sheng et al., Virtual network embedding with opportunistic resource sharing. IEEE Trans. Parallel Distrib. Syst. 25(3), 816–827 (2014)CrossRefGoogle Scholar
  10. 10.
    X.I.A.O. Shaoqiu et al., Mutual coupling suppression in microstrip array using defected ground structure. IET Microwav Antennas Propagat 5(12), 1488–1494‏ (2011)CrossRefGoogle Scholar
  11. 11.
    JAISWAL, Akanksha et al., A novel circular slotted microstrip-fed patch antenna with three triangle shape defected ground structure for multiband applications. Adv Electromagn 7(3), 56–63‏ (2018)ADSCrossRefGoogle Scholar
  12. 12.
    D. Bensafeddine, F. Djerfaf, F. Chouireb, D. Vincent, Design of tunable microwave transmission lines using metamaterial cells. Appl. Phys. A 123, 248 (2017).  https://doi.org/10.1007/s0033 ADSCrossRefGoogle Scholar
  13. 13.
    H.J. El-Khozondar, R.J. El-Khozondar, S. Zouhdi, Propagation of surface waves at the interface between nonlinear MTMs and anisotropic materials. Appl. Phys. A 115(2), 439–442 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    H.A. Majid, M.K.A. Rahim, Parametric studies on left-handed metamaterial consist of modified split-ring resonator and capacitance loaded strip. Appl. Phys. A 103.3, 607–610 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    H.J. El-Khozondar, R.J. El-Khozondar, S. Zouhdi, Propagation of surface waves at the interface between nonlinear MTMs and anisotropic materials. Appl. Phys. A 115(2), 439–442 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Verma et al., Design of a dual band rectangular Microstrip Patch Antenna with DGS for wireless applications. In IEEE 3rd international conference on signal processing and integrated networks (SPIN) (2016)Google Scholar
  17. 17.
    H.J. El-Khozondar, J. Rifa, Surface waves at the interface between tunable LC–MTMs and nonlinear media. Appl. Phys. A 109(4), 865–867‏ (2012)ADSCrossRefGoogle Scholar
  18. 18.
    J.T. Cai, G.-M. Wang, J.-G. Liang, High-efficiency reflectarray antenna using a compact focusing meta-lens. Appl. Phys. A 123, 159 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    M.A.H.D.I. Riadh, A.H. Taha, M.R. Saleem, Miniaturization of rectangular microstrip patch antenna using topology optimized metamaterial. IEICE Electron. Express, 14(19), 20170787 (2017)CrossRefGoogle Scholar
  20. 20.
    S. Kakkar, P.S. Rani, New antenna with fractal shaped DGS for emergency management applications. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(3), 721–724 (2013)Google Scholar
  21. 21.
    D. Guha, S. Biswas, C. Kumar, Printed antenna designs using defected ground structures. In Forum for electromagnetic research methods and application technologies (FERMAT), Vol. 2. FERMAT is published under the auspices of the University of Central Florida (2014)Google Scholar
  22. 22.
    E.K. Hamad, N. Mahmoud, Compact tri-band notched characteristics UWB antenna for WiMAX, WLAN and X-band applications. Adv. Electromagn. 6(2), 53 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    K. Tao et al., A novel two-degree-of-freedom MEMS electromagnetic vibration energy harvester. J. Micromech. Microeng. 26(3), 035020‏ (2016)ADSCrossRefGoogle Scholar
  24. 24.
    G. Divyasri, N. Gunaskaran, Design of patch antenna for multiband operation using metamaterial. Int. J. Electr. Comput. Eng. 1(4), 5–10 (2015)Google Scholar
  25. 25.
    M.F. ABDUL KHALID et al., Dual-band bandpass filter with dumbbell shaped defective ground structure. Int. J. Adv. Sci. Eng. Inf. Technol. 7(2), 695–701‏ (2017)CrossRefGoogle Scholar
  26. 26.
    Z.A.H.A.R.I.S. Zaharias, D., et al. Exponential log-periodic antenna design using improved particle swarm optimization with velocity mutation. IEEE Trans. Magn. 53(6), 1–4‏ (2017)CrossRefGoogle Scholar
  27. 27.
    D. WANG, D. TAN, LIU, Lei, Particle swarm optimization algorithm: an overview. Soft. Comput. 22(2), 387–408‏ (2018)CrossRefGoogle Scholar
  28. 28.
    R. Abdelmalek, et al. Modeling of electromagnetic behavior of composite thin layers using genetic algorithm. In: IEEE 5th international conference on electrical engineering-boumerdes (ICEE-B), p. 1–4 (2017)Google Scholar
  29. 29.
    I. Bouchachi, A. Reddaf, K. Ferroudji, et al. Microstrip antenna synthesis using an application programming interface. In: International conference on applied science and environmental technology (2018)Google Scholar
  30. 30.
    S. Kumar, A.P. Singh, K. Mukesh Kumar, Theoretical analysis and design of dual band DGS antenna with small frequency ratio for Wi-Fi and WiMAX applications. Progr. Electromagn. Res. 62, 153–166 (2017)CrossRefGoogle Scholar
  31. 31.
    J. Lal, H.K. Kan, W.S. Rowe, Dual-frequency F-shaped shorted patch antenna. Microw. Opt. Technol. Lett. 48(9), 1811–1812 (2006)CrossRefGoogle Scholar
  32. 32.
    M. Tanwani, R.S. Chauhan, P. Kiran Singh. Dual band slotted antenna with DGS. In: IEEE international conference on green computing and internet of things (ICGCIoT) (2015)Google Scholar
  33. 33.
    Chow-Yen-Desmond Sim, Dual band CPW-fed monopole antenna with asymmetrical ground plane for bandwidth enhancement. Microw. Opt. Technol. Lett. 50(11), 3001–3004 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Semiconductors and Functional Materials LaboratoryUniversity Amar Telidji LaghouatLaghouatAlgeria
  2. 2.Research Center in Industrial Technologies CRTIAlgiersAlgeria

Personalised recommendations