Applied Physics A

, 125:207 | Cite as

Synthesis and properties of BaWO4 nanocrystals prepared using a reverse microemulsion method

  • Guojun ZhaEmail author
  • Naigen Hu
  • Minhua Jiang
  • Xiangming Zeng
  • Haoqing Hou


Barium tungstate (BaWO4) nanocrystals were successfully synthesized using a reverse microemulsion method. The effects of the molar ratio of water to surfactant (ωo), reactant concentration, and aging time on the size and morphology of the BaWO4 nanocrystals were investigated. The obtained products were characterized by scanning electron microscopy and X-ray diffraction (XRD). The experimental results showed that the morphology and size of the as-prepared BaWO4 nanocrystals were greatly affected by the ωo and the initial concentration, but no obvious effect by the aging time. XRD analysis showed that the BaWO4 nanocrystals synthesized had the high purity under conditions of initial reactant concentration of 0.2 mol/L, ωo of 40, at temperature of 50 °C and aging time of 24 h. Photoluminescent spectra revealed that BaWO4 crystallites displayed a very strong peak at 351 nm under different aging time.



This work was supported by the Natural Science Foundation of China (51664047) and the Foundations from the Department of Education in Jiangxi Province (GJJ161187, JY1577, and GJJ151209).


  1. 1.
    L.I. Ivleva, I.S. Voronina, P.A. Lykov et al., Growth of optically homogeneous BaWO4 single crystals for Raman lasers. J Cryst. Growth 304(1), 108 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    M. Tyagi, S.C. Sabharwal et al., Luminescence properties of BaWO4 single crystal. J. Lumin. 128(9), 1528 (2008)CrossRefGoogle Scholar
  3. 3.
    J.H. He, M. Han, X.P. Shen, Crystal hierarchically splitting in growth of BaWO4 in positive cat-anionic microemulsion. J Cryst. Growth 310(21), 4581 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    H.T. Shi, L.M. Qi, J.M. Ma et al., Polymer-directed synthesis of penniform BaWO4 nanostructures in reverse Micelles. J. Am. Chem. Soc. 125(3), 450 (2003)Google Scholar
  5. 5.
    Y. Shen, W. Li, T. Li, Microwave-assisted synthesis of BaWO4 nanoparticles and its photoluminescence properties. Mater. Lett. 65, 2956 (2011)CrossRefGoogle Scholar
  6. 6.
    Y.K. Yin, Z.B. Gan, Y.Z. Sun et al., Controlled synthesis and photoluminescence properties of BaXO4 (X = W, Mo) hierarchical nanostructures via a facile solution route. Mater. Lett. 64, 789 (2010)CrossRefGoogle Scholar
  7. 7.
    X.M. Wang, H.Y. Xu, H. Wang et al., Morphology-controlled BaWO4 powders via a template—free precipitation technique. J. Cryst. Growth 28(41), 254 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    R. Wang, C. Liu, J. Zeng et al., Fabrication and morphology control of BaWO4 thin films by microwave assisted chemical bath deposition. J Solid State Chem. 182, 677 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    F.M. Pontes, M.A.M.A. Maurera, A.G. Souza et al., structural and optical characterization of BaWO4 and PbWO4 thin films prepared by a chemical route. J.Eur. Ceram. Soc 2, 3001 (2003)CrossRefGoogle Scholar
  10. 10.
    M.C. Oliveira, L. Gracia, I.C. Nogueira et al., Synthesis and morphological transformation of BaWO4 crystals: experimental and theoretical insights. Ceram. Int. 42(9), 10913 (2016)CrossRefGoogle Scholar
  11. 11.
    L.S. Cavalcante, F.M.C. Batista, M.A.P. Almeida et al., Structural refinement, growth process, photoluminescence and photocatalytic properties of (Ba1–xPr2x/3)WO4 crystals synthesized by the coprecipitation method. RSC Adv. 2, 6438 (2012)CrossRefGoogle Scholar
  12. 12.
    G. Jia, D.B. Dong, C. Song et al., Synthesis, formation process, and luminescence properties of monodisperse barium tungstate hierarchical ellipsoidal particles. Sci. Adv. Mater. 6(4), 808 (2014)CrossRefGoogle Scholar
  13. 13.
    B. Sun, Y. Liu, W. Zhao, J. Wu et al., Hydrothermal preparation and whitelight-controlled resistive switching behavior of BaWO4 nanospheres. NanoMicro Lett. 7, 80 (2015)Google Scholar
  14. 14.
    Z.J. Luo, H.M. Li, J.X. Xia et al., Microwave-assisted synthesis of barium tungstate nanosheets and nanobelts by using polymer PVP micelle as templates. Mater. Lett. 61(8–9), 1845 (2007)CrossRefGoogle Scholar
  15. 15.
    J.K. Liu, Q.S. Wu, Y.P. Ding, Controlled synthesis of different morphologies of BaWO4 crystals through biomembrane/organic-addition supramolecule templates. Cryst. Growth Des. 5(2), 445 (2005)CrossRefGoogle Scholar
  16. 16.
    L.P. Chen, Y.H. Gao, J.L. Zhu, Luminescent properties of BaWO4 films prepared by cell electrochemical technique. Mater. Lett. 62, 3434 (2008)CrossRefGoogle Scholar
  17. 17.
    X. Zhang, Y. Xie, F. Xu et al., Growth of BaWO4 fishbone like Nanostructures in w/o microemulsion. J. Colloid Interface Sci. 274, 118 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Y.D. Yin, G.Y. Hong, Morphology control of lanthanum hydroxide nanorods synthesized by hydrothermal microemulsion method. Chem. J. Chin. Univ. 26(10), 1795 (2005)Google Scholar
  19. 19.
    Z.W. Song, J.F. Ma, X.Y. Li et al., Electrochemical synthesis and characterization of barium tungstate crystallites. J. Am. Ceram. Soc. 92(6), 1 354 (2009)CrossRefGoogle Scholar
  20. 20.
    Y. Wang, W. Mahler, Degenerate four-wave mixing of CdS/polymer composite. Opt. Commun. 61, 233 (1987)ADSCrossRefGoogle Scholar
  21. 21.
    L.S. Cavalcante, J.C. Sczancoski, L.F. Lima et al., Synthesis, characterization, anisotropic growth and photoluminescence of BaWO4. Cryst. Growth Des. 9(2), 1002–1012 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringJiangxi Normal UniversityNanchangChina
  2. 2.School of New Energy Science and EngineeringXinyu UniversityXinyuChina

Personalised recommendations