Advertisement

Applied Physics A

, 125:205 | Cite as

GaN/AlxGa1−xN/GaN heterostructure IMPATT diode for D-band applications

  • Xiusheng Li
  • Lin’An YangEmail author
  • Xiaoyu Zhang
  • Xiaohua Ma
  • Yue Hao
Article
  • 64 Downloads

Abstract

In this paper, a novel structural impact ionization avalanche transit time (IMPATT) diode configured by GaN/AlxGa1−xN/GaN heterostructure is investigated at the operation frequency of D-Band. Simulation results show that, with Al composition x varies from 0.2 to 0.6, a more localized avalanche region width is obtained, the device breakdown voltage increases gradually, while the RF output power and the DC-to-RF conversion efficiency have also shown significant improvement as compared with the GaN homostructure IMPATT diode. The highest values of the RF output power density and the DC-to-RF conversion efficiency of GaN/Al0.4Ga0.6N/GaN heterostructure are obtained as 1.56 MW/cm2 and 21.99%, larger than that of 1.02 MW/cm2 and 16.37% for GaN homostructure IMPATT diode. Meanwhile, the lowest Q factor can be achieved, which implies that heterostructure IMPATT diodes exhibit better stability and higher growth rate of microwave oscillation compared with conventional IMPATT diodes.

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61674117, in part by the Key Program of National Natural Science Foundation of China under Grant 61434006 and in part by the National Natural Science Foundation of China under Grant 61634005.

References

  1. 1.
    A. Biswas, S. Sinha, A. Acharyya, A. Banerjee, S. Pal, H. Satoh, H. Inokawa, J. Infraed. Millim. TE. 39(10), 954–974 (2018)CrossRefGoogle Scholar
  2. 2.
    G.C. Ghivela, J. Senguptal, M. Mitra, IETE. J. Edu. 58(2), 61–66 (2017)CrossRefGoogle Scholar
  3. 3.
    Y. Dai, L.A. Yang, Q. Chen, Y. Wang, Y. Hao, Aip. Adv. 6(5), 061301 (2016)CrossRefGoogle Scholar
  4. 4.
    B. Chakrabarti, D. Ghosh, L.P. Mishra, M. Mitra, In. J. Sci. Eng. Res. 3(2), 1–6 (2012)Google Scholar
  5. 5.
    N.S. Dogan, J.R. East, M.E. Elta, G.I. Haddad, IEEE Trans. Microw. Theory Tech 35(12), 1308–1315 (1987)ADSCrossRefGoogle Scholar
  6. 6.
    M.J. Kearney, N.R. Couch, R.S. Smith, J.S. Stephens, J. Appl. Phys. 71(9), 4612–4614 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    M.J. Bailey, IEEE Trans. Electron Devices 39(8), 1829–1834 (1992)ADSCrossRefGoogle Scholar
  8. 8.
    S. Banerjee, M. Mitra, J. Semicond. 37(6), 064002 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    K.K. Chandramohan, R.U. Khan, B.B. Pal, IETE. J. Res. 40(5–6), 261–265 (2015)Google Scholar
  10. 10.
    P.R. Tripathy, M. Mukherjee, S.P. Pati, Int. J. Mater. Eng. 2(3), 17–22 (2012)CrossRefGoogle Scholar
  11. 11.
    S. Banerjee, A. Acharyya, J.P. Banerjee, Act. and Passi. Electro. Compon.. 2013, 1–7 (2013)Google Scholar
  12. 12.
    S.R. Pattanaika, J.K. Mishrab, G.N. Dash, IETE. J. Res. 57(4), 351–356 (2011)CrossRefGoogle Scholar
  13. 13.
    P.R. Tripathy, S.K. Choudhury, S.P. Pati, Proc. AIP 1832(1), 120015 (2017)Google Scholar
  14. 14.
    G.N. Dash, J. Pradhan, S.K. Swain, S.R. Pattanaik, EDSSC Proc. IEEE 1–2 (2013).  https://doi.org/10.1109/EDSSC.2013.6628115
  15. 15.
    R.K. Parida, A.K. Panda, Adv. Sci. Lett. 20(3–4), 668–670 (2014)CrossRefGoogle Scholar
  16. 16.
    A.K. Panda, D. Pavlidis, E.A. Alekseev, IEEE Trans. Electron Devices 48(7), 1473–1475 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    A. Reklaitis, L. Reggiani, J. Appl. Phys. 97, 043709 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    A.K. Panda, D. Pavlidis, E. Alekseev, IEEE Trans. Electron Devices 48(4), 820–823 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    T. Sadi, R.W. Kelsall, N.J. Pilgrim, IEEE Trans. Electron Devices 53(12), 2892–2900 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    E. Alekseev, D. Pavlidis, Solid State Electron 44(2), 245–252 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    A. Reklaitis, Appl. Phys. Lett. 86(26), 262110 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Cao, R. Chu, R. Li, M. Chen, A.J. Williams, Appl. Phys. Lett. 108(5), 054101 (2016)CrossRefGoogle Scholar
  23. 23.
    Synopsys, TCAD Sentaurus Tutorial, Copyright © 2013 Synopsys, Inc. All rights reservedGoogle Scholar
  24. 24.
    A.R. Denton, N.W. Ashcroft, Phys. Rev. A 43(6), 3161 (1991)ADSCrossRefGoogle Scholar
  25. 25.
    M. Farahmand, K.F. Brennan, IEEE Trans. Electron Devices 46(7), 1319–1325 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    F. Bertazzi, M. Moresco, E. Bellotti, J. Appl. Phys. 106(6), 063718 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    C. Bulutay, Semicond. Sci. Tech. 17(10), L59–L62 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    S.M. Sze, R.M. Ryder, Proc. IEEE 59(8), 1140–1154 (1971)CrossRefGoogle Scholar
  29. 29.
    A. Acharyya, S. Chatterjee, J. Goswami, J. Comput. Electron. 13(3), 739–752 (2014)CrossRefGoogle Scholar
  30. 30.
    O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, L.F. Eastman, J. Phys. Condens. Matter 14(13), 3399–3434 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    A. Reklaitis, L. Reggiani, J. Appl. Phys. 95(12), 7925–7935 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    S. Heikman, S. Keller, Y. Wu, J.S. Speck, S.P. DenBaars, U.K. Mishra, J. Appl. Phys. 93(12), 10114–10118 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    D.L. Scharfetter, H.K. Gummel, IEEE Trans. Electron Devices 16(1), 64–77 (1969)ADSCrossRefGoogle Scholar
  34. 34.
    H. Eisele, G.I. Haddad, in Modern, ed. by S. M. Sze (Wiley, New York, 1998)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiusheng Li
    • 1
    • 2
  • Lin’An Yang
    • 1
    Email author
  • Xiaoyu Zhang
    • 1
  • Xiaohua Ma
    • 1
  • Yue Hao
    • 1
  1. 1.State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of MicroelectronicsXidian UniversityXi’anChina
  2. 2.Weifang UniversityWeifangChina

Personalised recommendations